
From heuristic to optimal models in 
naturalistic visual search

�1

Angela Radulescu1,2*, Bas van Opheusden1,2*, 
Fred Callaway2, Thomas Griffiths2 & James Hillis1

Bridging AI and Cognitive Science workshop, ICLR
April 24th, 2020

1 2



�2

An everyday problem…

…where are the keys? 



Resource allocation in visual search
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• Main contribution: frame visual search as a reinforcement learning 
problem 

‣ Fixations as information-gathering actions

‣Do people employ optimal strategies?  
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• Main contribution: frame visual search as a reinforcement learning 
problem 

‣ Fixations as information-gathering actions

‣Do people employ optimal strategies?  


• Challenges: 


‣Representing the state space — world is high-dimensional; what 
features does visual system have access to?

 

‣ Finding the optimal policy — reward function is sparse; how to 

balance cost of sampling and performance? 



Naturalistic visual search in VR

• VR + gaze tracking, fixed camera location

• Cluttered room, 1 target among many distractors

• “Find the target within 8 seconds”

• 6 different rooms x 5 locations per room x 10 trials per location = 300 unique scenes

• Some trials assisted
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• Latent: {Ftrue, itrue} 
‣Scene features and target identity unknown to the agent


• States: {F, J, ftarget} 
‣Mean and precision of each feature for each object


• Actions: {o, ⊥}

‣Fixate on object o, or terminate


• Transitions: measure X ~ N(Ftrue, Jmeas) 
‣ Jmeas decreases with distance from o

‣ Integrate X into F and J with Bayesian cue combination 


• Rewards: if fixating o then R = -c; if ⊥ then R = 1 if argmax(P(target | F, J)) = 
itrue and 0 otherwise 

‣Reward agent when most probable target given state matches true target 
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Challenge I: representing the belief space  
Challenge II: finding the optimal policy
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Which features to include? 
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Which features to include? 

Treisman & Gelade, 1980

Horowitz & Wolfe, 2017
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Target

Object attributes

Shape
 Color


Objects
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Which features to include? 



Shape and color predict gaze
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Shape and color predict gaze
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Challenge I: representing the belief space  
Challenge II: finding the optimal policy
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Calculate/update posterior probabilities

If maximum exceeds criterion, STOP

Move eyes to object most likely to be target

Sample information at fixated location

Najemnik and Geisler, 2005

Yang, Lengyel and Wolpert, 2017

“Ideal observer” model of visual search
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• Can be expressed as a policy in the meta-MDP, but not 
necessarily optimal



Dense Layers

π

V

Policy
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Object locations

Object features

Target features

Posterior

Input

• Proximal Policy Optimization 
(PPO, Schulman, 2017), 
implemented with tf-agents


• 10 replications, manually tuned 
hyper-parameters 


• Manual tweaking of input 
representation & initialization
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Optimizing meta-level return with  
deep reinforcement learning
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• Proximal Policy Optimization 
(PPO, Schulman, 2017), 
implemented with tf-agents


• 10 replications, manually tuned 
hyper-parameters 


• Manual tweaking of input 
representation & initialization
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Optimizing meta-level return with  
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implemented with tf-agents


• 10 replications, manually tuned 
hyper-parameters 
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Model

Start End

Human

Does optimal policy match humans? 
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Model

Start End

Human
Object

Object

Does optimal policy match humans? 
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Model

Start End

Human

Which features drive human search? 
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Ongoing work
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• Alternative schemes for extracting low-dimensional feature 
representations of objects 

‣Deep convolutional neural network models of human ventral 
visual stream (Yamins et al. 2014, Fan et al. 2019)

‣MeshNet model of 3D shape representation (Feng et al. 2018)  
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• Alternative schemes for extracting low-dimensional feature 
representations of objects 

‣Deep convolutional neural network models of human ventral 
visual stream (Yamins et al. 2014, Fan et al. 2019)

‣MeshNet model of 3D shape representation (Feng et al. 2018)  


• Investigating the learned policy  


‣ Is it optimal? 
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Thank you!


