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An everyday problem...
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Resource allocation in visual search

* Main contribution: frame visual search as a reinforcement learning
problem
» Fixations as information-gathering actions
» Do people employ optimal strategies?
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* Challenges:

» Representing the state space — world is high-dimensional; what
features does visual system have access to?

» Finding the optimal policy — reward function is sparse; how to
balance cost of sampling and performance?



Naturalistic visual search in VR
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* VR + gaze tracking, fixed camera location

* Cluttered room, 1 target among many distractors
* “Find the target within 8 seconds”

* 6 different rooms x 5 locations per room x 10 trials per location = 300 unique scenes
« Some trials assisted
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Meta-level Markov Decision Process

* Latent: {Ftrue, itrue}
» Scene features and target identity unknown to the agent

e States: {F, J, fiarget}
» Mean and precision of each feature for each object

* Actions: {0, 1}
» Fixate on object o, or terminate

» Transitions: measure X ~ N(Firue, Jmeas)
» Jmeas decreases with distance from o
» Integrate X into F and J with Bayesian cue combination

- Rewards: if fixating o then R = -c; if L then R = 1 if argmax(P(target | F, J)) =
Itruve @and O otherwise
» Reward agent when most probable target given state matches true target

Callaway & Griffiths 2018
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Challenge I: representing the belief space
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Which features to include?
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Which features to include?
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Treisman & Gelade, 1980
Horowitz & Wolfe, 2017

17



Which features to include?
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Which features to include?
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Which features to include?
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Shape and color predict gaze
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Shape and color predict gaze

Gaze on objects

Gaze on objects
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Shape and color predict gaze
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Challenge lI: finding the optimal policy
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"ldeal observer” model of visual search

Calculate/update posterior probabilities

If maximum exceeds criterion, STOP
Move eyes to object most likely to be target
Sample information at fixated location

* Can be expressed as a policy in the meta-MDP, but not
necessarily optimal

Najemnik and Geisler, 2005
Yang, Lengyel and Wolpert, 2017
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Optimizing meta-level return with
deep reinforcement learning

* Proximal Policy Optimization
(PPO, Schulman, 2017),
iImplemented with tf-agents

* 10 replications, manually tuned
hyper-parameters

* Manual tweaking of input
representation & initialization

Object locations
Object features
Target features

Posterior

Input
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Optimizing meta-level return with
deep reinforcement learning

* Proximal Policy Optimization 0.8;
(PPO, Schulman, 2017),
iImplemented with tf-agents

* 10 replications, manually tuned
hyper-parameters

* Manual tweaking of input 0 G : G :
representation & initialization Simulated episodes (millions)
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Optimizing meta-level return with
deep reinforcement learning

* Proximal Policy Optimization 0.8;
(PPO, Schulman, 2017),
iImplemented with tf-agents

* 10 replications, manually tuned
hyper-parameters
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* Manual tweaking of input 0 G : G :
representation & initialization Simulated episodes (millions)
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Does optimal policy match humans?

Start Il End
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Does optimal policy match humans?
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Which features drive human search?
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Ongoing work
* Alternative schemes for extracting low-dimensional feature
representations of objects
» Deep convolutional neural network models of human ventral

visual stream (Yamins et al. 2014, Fan et al. 2019)
» MeshNet model of 3D shape representation (Feng et al. 2018)
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Ongoing work
* Alternative schemes for extracting low-dimensional feature
representations of objects
» Deep convolutional neural network models of human ventral
visual stream (Yamins et al. 2014, Fan et al. 2019)
» MeshNet model of 3D shape representation (Feng et al. 2018)

* Investigating the learned policy

» Is it optimal?
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Thank youl!
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