From heuristic to optimal models in naturalistic visual search

Angela Radulescu^{1,2*}, Bas van Opheusden^{1,2*}, Fred Callaway², Thomas Griffiths² & James Hillis¹

facebook Reality Labs

Bridging AI and Cognitive Science workshop, *ICLR* April 24th, 2020

An everyday problem...

...where are the keys?

Resource allocation in visual search

- Main contribution: frame visual search as a reinforcement learning problem
 - Fixations as information-gathering actions
 - Do people employ optimal strategies?

Resource allocation in visual search

- Main contribution: frame visual search as a reinforcement learning problem
 - Fixations as information-gathering actions
 - Do people employ optimal strategies?
- Challenges:
 - Representing the state space world is high-dimensional; what features does visual system have access to?
 - Finding the optimal policy reward function is sparse; how to balance cost of sampling and performance?

Naturalistic visual search in VR

- VR + gaze tracking, fixed camera location
- Cluttered room, 1 target among many distractors
- "Find the target within 8 seconds"
- 6 different rooms x 5 locations per room x 10 trials per location = 300 unique scenes
- Some trials assisted

Callaway & Griffiths 2018

• Latent: {*F*_{true}, *i*_{true}}

Scene features and target identity unknown to the agent

• Latent: {*F*true, *i*true}

Scene features and target identity unknown to the agent

• States: {*F*, *J*, *f*_{target}}

Mean and precision of each feature for each object

• Latent: {*F*_{true}, *i*_{true}}

Scene features and target identity unknown to the agent

• States: {*F*, *J*, *f*_{target}}

Mean and precision of each feature for each object

• Actions: $\{o, \perp\}$

Fixate on object *o*, or terminate

- Latent: {*F*_{true}, *i*_{true}}
 - Scene features and target identity unknown to the agent
- States: {F, J, f_{target}}
 - Mean and precision of each feature for each object
- Actions: {*o*, ⊥}
 Fixate on object *o*, or terminate
- **Transitions**: measure *X* ~ *N*(*F*_{true}, *J*_{meas})
 - ► J_{meas} decreases with distance from o
 - Integrate X into F and J with Bayesian cue combination

- Latent: {*F*true, *i*true}
 - Scene features and target identity unknown to the agent
- States: {*F*, *J*, *f*_{target}}
 - Mean and precision of each feature for each object
- Actions: {*o*, ⊥}
 Fixate on object *o*, or terminate
- **Transitions**: measure *X* ~ *N*(*F*_{true}, *J*_{meas})
 - J_{meas} decreases with distance from o
 - Integrate X into F and J with Bayesian cue combination
- **Rewards**: if fixating *o* then R = -c; if \perp then R = 1 if $argmax(P(target | F, J)) = i_{true}$ and 0 otherwise

Reward agent when most probable target given state matches true target

Challenge I: representing the belief space Challenge II: finding the optimal policy

Treisman & Gelade, 1980 Horowitz & Wolfe, 2017

Shape

D2 distribution

Shape and color predict gaze

Shape and color predict gaze

Shape and color predict gaze

Challenge I: representing the belief space Challenge II: finding the optimal policy

"Ideal observer" model of visual search

 Can be expressed as a policy in the meta-MDP, but not necessarily optimal

> Najemnik and Geisler, 2005 Yang, Lengyel and Wolpert, 2017

Optimizing meta-level return with deep reinforcement learning

- Proximal Policy Optimization (PPO, Schulman, 2017), implemented with tf-agents
- 10 replications, manually tuned hyper-parameters
- Manual tweaking of input representation & initialization

Optimizing meta-level return with deep reinforcement learning

- Proximal Policy Optimization (PPO, Schulman, 2017), implemented with tf-agents
- 10 replications, manually tuned hyper-parameters
- Manual tweaking of input representation & initialization

Optimizing meta-level return with deep reinforcement learning

- Proximal Policy Optimization (PPO, Schulman, 2017), implemented with tf-agents
- 10 replications, manually tuned hyper-parameters
- Manual tweaking of input representation & initialization

Does optimal policy match humans?

Does optimal policy match humans?

Which features drive human search?

Ongoing work

- Alternative schemes for extracting low-dimensional feature representations of objects
 - Deep convolutional neural network models of human ventral visual stream (Yamins et al. 2014, Fan et al. 2019)
 - MeshNet model of 3D shape representation (Feng et al. 2018)

Ongoing work

- Alternative schemes for extracting low-dimensional feature representations of objects
 - Deep convolutional neural network models of human ventral visual stream (Yamins et al. 2014, Fan et al. 2019)
 - MeshNet model of 3D shape representation (Feng et al. 2018)
- Investigating the learned policy
 - Is it optimal?

Thank you!