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That baby video from every AI talk…..

Francis Vachon
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http://www.youtube.com/watch?v=8vNxjwt2AqY&t=15


Building agents inspired by children can be hard
Environments differ. Children act in the real world, lots of RL research takes 
place in grid-world settings or 2D Atari games

Comparisons are not controlled. Experiments on children engaged in free 
exploration, majority of research in AI is in goal-seeking domains

Can’t always ‘close the loop’. Ultimately want to learn something about 
human cognition from AI research

Studying child and agent behavior in the same controlled, rich 3-D 
environment may alleviate many of these problems!
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Contribution:
A framework for directly comparing human children 

with artificial agents in DeepMind Lab.
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http://www.youtube.com/watch?v=M40rN7afngY&t=4
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Preschoolers explore more when 
evidence does not distinguish 
between multiple hypotheses 

What do we know about exploration of children?

(Bonawitz 2007)
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What do we know about exploration of children?

Babies exhibit meaningful hypothesis testing behaviors

(Feigenson 2015)

Example of violation Baby investigating toy

8



What do we know about exploration of children?

(Sumner 2019, Liquin 2019) 
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Children are more explorative in explore-exploit tasks
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Exploration in artificial agents
Goal-directed classical search methods

- Depth-First Search (DFS): explore down a path until a dead-end, then backtrack 
and explore next unexplored path

- Breadth-First Search (BFS): explore new states in the order they were observed
- A* Search: search to a goal guided by a heuristic
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Exploration in artificial agents
Reinforcement learning

● Random exploration: take random actions 
occasionally (e.g., ε-greedy)

● Intrinsic motivation (retrospective): reward 
bonus for exploring "interesting" regions
○ count-based: bonus for states that are 

rarely visited
○ curiosity-based: bonus for regions that 

don't match the learned world model
● Uncertainty-based methods (prospective): 

explore regions with high uncertainty
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Children

● Explore mostly at test time
● Most existing studies use 

real-world objects
● Given natural language 

instructions
● Easily switch between free 

& goal-directed exploration
● Lots of preexisting 

knowledge, e.g. “wall”, 
“move forward”, or “prize”

● Fine motor control is 
difficult

Agents

● Explore mostly during 
training/learning

● Hard to deploy in the real 
world

● Don’t understand natural 
language

● Most methods are for 
goal-directed tasks

● Almost no preexisting 
knowledge

● Excel at fine motor 
control

Difficulties Comparing Children and Agents
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Leveling the Playing Field with DeepMind Lab
● Forces an exact comparison at test time
● Restricted action set shared by agents and children
● Can be used to generate lots of training data for agents
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What does the setup look like?

View of child in task What the child sees

Include 
overall 
trajectory 

Child’s trajectory 
through the maze

End

Start
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Children’s exploration in DeepMind Lab  
Question: 

Are children (4-5 yrs. old, N=30) that are naturally more curious/exploratory in a 
random maze, more likely to succeed or find the goal in a smaller number of steps?

First person P.O.V. Goal (gummy):
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Results: Children’s Exploration in DeepMind Lab  

Results of K-means on 
part A: Free exploration

LOW – explored 22% (N=9)
MEDIUM – explored 44% (N=10)

HIGH - explored 71% (N=11)

Avg. % of maze explored vs. steps taken to gummy in Part B 
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Choice-Consistency: Metric for Direct Comparison

State

Human Action

State

Possible Agent Actions

Is human action ∈ agent actions?

If yes:
Action choice is consistent

If no:
Action choice is NOT consistent

Measure percentage of states in 
the trajectory where the action 
choice is consistent.
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Baseline: Do children “act” like Depth First Search?

No-Goal
Exploration

Goal-Oriented
Exploration

Choice-Consistency w/ DFS Algorithm (p=0.0073)

89.61%

96.04%
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Beyond Depth First Search
Children have a lot of prior information about exploration - does this matter? 
When does this matter? Can we quantify it?

By comparing to other exploration methods from both in classical search (A*, 
UCB, etc.) and reinforcement learning (Curiosity, Uncertainty, count-based) we 
can start to uncover these relationships. 
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Free-Exploration Find Goal



Future work: 
● Sparse vs. dense rewards? 
● Adding distractors (noisy TV)
● Testing memory / integration of information 
● Positive vs. negative rewards

In asking these questions, we will be able to acquire 
a deeper understanding of the way that children 
and agents explore novel environments, and how to 
close the gap between them. 
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Takeaways:
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http://www.youtube.com/watch?v=8vNxjwt2AqY&t=15
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