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ABSTRACT

Active inference is a theory that underpins the way biological agent’s perceive and
act in the real world. At its core, active inference is based on the principle that
the brain is an approximate Bayesian inference engine, building an internal gen-
erative model to drive agents towards minimal surprise. Although this theory has
shown interesting results with grounding in cognitive neuroscience, its application
remains limited to simulations with small, predefined sensor and state spaces.

In this paper, we leverage recent advances in deep learning to build more complex
generative models that can work without a predefined states space. State repre-
sentations are learned end-to-end from real-world, high-dimensional sensory data
such as camera frames. We also show that these generative models can be used to
engage in active inference. To the best of our knowledge this is the first application
of deep active inference for a real-world robot navigation task.

1 INTRODUCTION

Active inference and the free energy principle underpins the way our brain — and natural agents in
general — work. The core idea is that the brain entertains a (generative) model of the world which
allows it to learn cause and effect and to predict future sensory observations. It does so by constantly
minimising its prediction error or “surprise”, either by updating the generative model, or by inferring
actions that will lead to less surprising states. As such, the brain acts as an approximate Bayesian
inference engine, constantly striving for homeostasis.

There is ample evidence (Friston,2012; |Friston et al.,2013a;[2014])) that different regions of the brain
actively engage in variational free energy minimisation. Theoretical grounds indicate that even the
simplest of life forms act in a free energy minimising way (Friston, [2013).

Although there is a large body of work on active inference for artificial agents (Friston et al., 2006
2009; 2017;2013b; (Cullen et al., 2018)), experiments are typically done in a simulated environment
with predefined and simple state and sensor spaces. Recently, research has been done on using
deep neural networks as an implementation of the active inference generative model, resulting in
the umbrella term “deep active inference”. However, so far all of these approaches were only tested
on fairly simple, simulated environments (Ueltzhoffer, 2018; Millidgel 2019; (Catal et al.,[2019). In
this paper, we apply deep active inference on a robot navigation task, with high-dimensional camera
observations and deploy it on a mobile robot platform. To the best of our knowledge, this is the first
time that active inference is applied on a real-world robot navigation task.

In the remainder of this paper we will first introduce the active inference theory in Section 2} Next,
we show how we implement active inference using deep neural networks in Section 3] and discuss
initial experiments in Section 4]

2 ACTIVE INFERENCE

Active inference is a process theory of the brain that utilises the concept of free energy (Friston,
2013)) to describe the behaviour of various agents. It stipulates that all agents act in order to min-
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imise their own uncertainty of the world. This uncertainty is expressed as Bayesian Surprise, or
alternatively the variational free energy. In this context this is characterised by the difference be-
tween what an agent imagines about the world and what it has perceived about the world (Friston,
2010). More concretely, the agent builds a generative model P(6, §, @), linking together the agents
internal belief states s with the perceived actions a and observations o in the form of a joint distri-
bution. We use a tilde to denote a sequence of variables through time. This generative model can be
factorised as in Equation [I]

=

P(0,8,a) = P(a)P(so) | | P(oi|st)P(st]st—1,a:-1) €]

t

1

The free energy or Bayesian surprise is then defined as:
= Dx1(Q(8)|P(8, alo)) — log P(0) 2)
= Dx1(Q(8)[[P(8,a)) — Eq[log P(0]$)]

Here, (8) is an approximate posterior distribution. The second equality shows that free energy
is equivalent to the (negative) evidence lower bound (ELBO) (Kingma & Welling} [2013]; Rezende
et al.,|2014). The final equation frames the problem of free energy minimisation as explaining the
world from the agents beliefs whilst minimising the complexity of accurate explanations (Friston
et al.,[2016).

Crucially, in active inference agents will act according to the belief that they will keep minimising
surprise in the future. This means agents will infer policies that yield minimal expected free energy
in the future, with a policy 7 being the sequence of future actions a;.;, p starting at current time
step ¢ with a time horizon H. This principle is formalised in Equation [3| with o being the softmax
function with precision parameter +.

P(r) = o(—G(n))

t+H 3
G(m) = Z G(m, 1) ©)

Expanding the expected free energy functional G(m, 7) we get Equation E} Using the factorisation
of the generative model from Equation 1| we approximate Q (o, s;|m) ~ P(o;|s;)Q(s|r).

G(m,7) = Eq(o, s, |m [log Q(s|T) — log P(0;, s-|T)]
= EQ(oT,s,\ﬂ) [log Q(ST‘W) —log P(or|s;, ) — log P(ST|7T)] 4)
= Dxr(Q(s-|m)[|P(s7)) + Eqs, ) [H (P(0r|s7))]

Note that, in the final equality, we substitute P(s,|mw) by P(s.), a global prior distribution on the so-
called “preferred” states of the agent. This reflects the fact that the agent has prior expectations about
the states it will reach. Hence, minimising expected free energy entails both realising preferences,
while minimising the ambiguity of the visited states.

3 DEEP ACTIVE INFERENCE

In current treatments of active inference the state spaces are typically completely fixed upfront (Fris-
ton et al.| 2009} Millidge, |2019) or partially (Ueltzhotter, 2018)). However, this does not scale well
for more complex tasks as it is often difficult to design meaningful state spaces for such problems.
Therefore we allow for the agent to learn by itself what the exact parameterisation of its belief
space should be. We enable this by using deep neural networks to generate the various necessary
probability distributions for our agent.

We approximate the variational posterior distribution for a single timestep Q(s;|s;—1, a;—1, 0;) with
a network g4 (s¢|s¢—1,a¢—1,0;). Similarly we approximate the likelihood model P(o;|s;) with the
network pe(o¢|s;) and the prior P(s;|s;_1,a;—1) with the network pg(s;|s¢—1,a:—1). Each of
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Figure 1: The various components of the agent rolled out trough time. We minimise the variational
free energy by minimising both the negative log likelihood of observations and the KL divergence
between the state transition model and the observation model. The inferred hidden state is charac-
terised as a multivariate Gaussian distribution.

the networks output a multivariate normal distribution with a diagonal covariance matrix using the
reparameterisation trick (Kingma & Welling, 2013). These neural networks cooperate in a way
similar to a VAE, where the fixed standard normal prior is replaced with the learnable prior py, the
decoder by p¢ and finally the encoder by ¢y, as visualised in Figure [T}

These networks are trained end-to-end using the free energy formula from the previous section as
an objective.
Vit mini;ngise : —log pe(oi]st) + Dki(qs(Selsi—1, ar—1, 00)||po(Se]|si—1,a1-1)) (5)

As in a conventional VAE (Kingma & Welling, |2013) the negative log likelihood (NLL) term in the
objective punishes reconstruction error forcing the model to learn relevant information on the belief
state to be captured in the posterior output, while the KL term pulls the prior output towards the
posterior output, forcing the prior and posterior to agree on the content of the belief state in a way
that still allows the likelihood model to reconstruct the current observation.

We can now use the learned models to engage in active inference, and infer which action the agent
has to take next. This is done by generating imagined trajectories for different policies using py
and pe, calculating the expected free energy G and selecting the action of the policy that yields the
lowest G. These policies to evaluate can be predefined, or generated through random shooting, using
cross-entropy method (Boer et al., | 2005) or by building a search tree.

4 EXPERIMENTS

We validate our deep active inference approach on a real world robotics navigation task. First, we
collect a dataset consisting of two hours worth of real world action-observation sequences by driving
a Kuka Youbot base platform up and down the aisles of a warehouse lab. Camera observations are
recorded with a front mounted Intel Realsense RGB-D camera, without taking into account the
depth information. The X, y and angular velocities are recorded as actions at a recording frequency
of 10Hz. The models are trained on a subsampled version of the data resulting in a train set with
data points every 200ms.

Next, we instantiate neural networks g4 and p¢ as a convolutional encoder and decoder network,
and py using an LSTM. These are trained with Adam optimizer using the objective function from
Equation[5]for 1M iterations. We use a minibatch size of 128 and a sequence length of 10 timesteps.
A detailed overview of all hyperparameters is given in appendix.

We utilise the same approach as in|Catal et al.| (2020) for our imaginary trajectories and planning.
The agent has access to three base policies to pick from: drive straight, turn left and turn right. Ac-
tions from these policies are propagated to the learned models at different time horizons H = 10, 25
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(a) Preferred state.

v kbbb R RRd
(c) Imaginary future trajectories for different policies, i.e. going straight ahead (top), turning right (middle),

turning left (bottom).
~ ] ]

(d) Actually followed trajectory.

Figure 2: Experimental results: Figure (a) shows the target observation in imagined (reconstructed)
space. (b) The start observation of the trial. Figure (c) shows different imaginary planning results,
whilst (d) shows the actually followed trajectory.

or 55. For each resulting imaginary trajectory, the expected free energy G is calculated. Finally the
trajectory with lowest G is picked, and the first action of the chosen policy is executed, after which
the imaginary planning restarts. The robot’s preferences are given by demonstration, using the state
distribution of the robot while driving in the middle of the aisle. This should encourage the robot to
navigate in the aisles.

At each trial the robot is placed at a random starting position and random orientation and tasked
to navigate to the preferred position. Figure 2] presents a single experiment as an illustrative exam-
ple. Figure 2a] shows the reconstructed preferred observation from the given preferred state, while
Figure [2b] shows the trial’s start state from an actual observation. Figure [2c| shows the imagined
results of either following the policy “always turn right”, “always go straight” or “always turn left”.
Figure [2d|is the result of utilising the planning method explained above. Additional examples can

be found in the supplementary material.

The robot indeed turns and keeps driving in the middle of the aisle, until it reaches the end and then
turns aroundﬂ When one perturbs the robot by pushing it, it will again recover and continue to the
middle of the aisle.

5 CONCLUSION

In this paper we present how we can implement a generative model for active inference using deep
neural networks. We show that we are able to successfully execute a simple navigation task on a
real world robot with our approach. As future work we want to allow the robot to continuously learn
from past autonomous behaviour, effectively “filling the gaps” in its generative model. Also how
to define the “preferred state” distributions and which policies to evaluate remains an open research
challenge for more complex tasks and environments.

'A movie demonstrating the results is available atfhttps: //tinyurl.com/smvyk53


https://tinyurl.com/smvyk53
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Supplementary Material

A NEURAL ARCHITECTURE

| Layer | Neurons/Filters | activation function
Convolutional 8 Leaky ReLLU
Convolutional 16 Leaky ReLLU
8 | Convolutional 32 Leaky ReLLU
8 | Convolutional 64 Leaky ReLLU
é Convolutional 128 Leaky ReLLU
Concat N.A. N.A.
Linear 2 x 128 states Softplus
Linear 128 x 8x 8 Leaky ReLLU
2 | Convolutional 128 Leaky ReLU
£ | Convolutional 64 Leaky ReLLU
E Convolutional 32 Leaky ReLLU
5 | Convolutional 16 Leaky ReLU
Convolutional 8 LeakyReLU
- LSTM cell 400 Leaky ReLLU
-E Linear 2 x128 states Softplus

Table 1: Neural network architectures. All convolutional layers have a 3x3 kernel. The convolutional
layers in the Likelihood model have a stride and padding of 1 to ensure that they preserve the input
shape. Upsampling is done by nearest neighbour interpolation. The concat step concatenates the
processed image pipeline with the vector inputs a and s.



Published as a workshop paper at “Bridging Al and Cognitive Science” (ICLR 2020)

B HYPERPARAMETERS

| Parameter | Value
50 learning rate 0.0001
g batch size 128
g train iterations IM
— sequence length 10
~y 100
&| D (Catal et al, 2020) 1
£ | K(Catal et al.,2020) | 10,25, 55
f:" N (Catal et al., 2020) 5
p (Catal et al., 2020) 0.001

Table 2: Overview of the model hyperparemeters.
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C DETAILED PLANNING EXAMPLE

A movie demonstrating the results is available at https://tinyurl.com/smvyk53.

Figure 3: Trial preferred state


https://tinyurl.com/smvyk53
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Figure 6: Long term planning
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