
Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

WEAKLY-SUPERVISED TRAJECTORY SEGMENTATION
FOR LEARNING REUSABLE SKILLS

Parsa Mahmoudieh, Trevor Darrell, Deepak Pathak
University of California, Berkeley
{parsa.m, trevor, pathak}@cs.berkeley.edu

ABSTRACT

Learning useful and reusable skill, or sub-task primitives, is a long-standing prob-
lem in sensorimotor control. This is challenging because it’s hard to define what
constitutes a useful skill. Instead of direct manual supervision which is tedious and
prone to bias, in this work, our goal is to extract reusable skills from a collection
of human demonstrations collected directly for several end-tasks. We propose a
weakly-supervised approach for trajectory segmentation following the classic work
on multiple instance learning. Our approach is end-to-end trainable, works directly
from high-dimensional input (e.g., images) and only requires the knowledge of what
skill primitives are present at training, without any need of segmentation or ordering
of primitives. We evaluate our approach via rigorous experimentation across four
environments ranging from simulation to real world robots, procedurally generated
to human collected demonstrations and discrete to continuous action space. Finally,
we leverage the generated skill segmentation to demonstrate preliminary evidence
of zero-shot transfer to new combinations of skills. Result videos are at https:
//sites.google.com/view/trajectory-segmentation/.

1 INTRODUCTION

Humans have an uncanny ability to generalize from one task to another using either few, or at times,
no new examples. This wouldn’t be possible if they were to learn each new task from scratch.
Humans rather extract reusable skills from already learned tasks and compose them to generalize to
new tasks seamlessly. However, learning such repeatable skills has been a long standing challenge in
sensorimotor control, partly because it is hard to define what constitutes a useful skill in itself.

One way to layout the scope of a skill is either by designing a corresponding reward function, or
collecting expert demonstrations. For instance, consider a skill of reaching for an object. One
can easily learn a policy for this skill by either using reinforcement learning with l2 distance as
reward (Sutton & Barto, 1998), or by imitation learning from kinesthetic demonstrations (Argall
et al., 2009; Hussein et al., 2017). However, neither of these approaches provide a natural form of
supervision because the way this skill is performed in isolation can be drastically different from the
way it could be used as part of some end task. For instance, reaching for a cup for pushing is very
different from the way one would reach for a cup to pick it up for pouring. Furthermore, hierarchical
RL has also been employed to learn low-level worker policies by having a meta-policy or manager
that takes in states at a sparser time scale (Dayan & Hinton, 1993; Vezhnevets et al., 2017; Sutton
et al., 1999; Bacon et al., 2017). However, the subpolicies learned in this type of options framework
are not intrepretable in their specialization, and therefore, difficult to reuse for new tasks.

A promising alternative is to learn skills that are already embedded in some useful end tasks. Previous
works have explored this in the context of an agent’s own exploration (Eysenbach et al., 2018; Nair
et al., 2018; Pathak et al., 2018), where, the agent learns goal conditioned (Schaul et al., 2015;
Andrychowicz et al., 2017) skill policies using data collected during its exploration phase. These
skills are then used to plan for novel tasks at inference. However, exploration in itself is an open
research problem, and hence, such approaches have difficulty in scaling to complex skills.

In this work, we follow an alternative paradigm where we extract skills from a collection of human
demonstrations gathered to perform different end tasks. A straightforward way to extract reusable
skills would be to get an expert to label each time-step of demonstrations with the corresponding skill

1

https://sites.google.com/view/trajectory-segmentation/
https://sites.google.com/view/trajectory-segmentation/

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

W x H x T

Segmentation
Model

C x T
C x 1

Encoder
LSTM

Trajectory
Images

Timestep-level
Prediction

Trajectory-level
Prediction

Trajectory-level
Tags

Figure 1: We propose a weakly-supervised approach for segmenting demonstrations into skill primitives, aka,
sub-tasks. Our approach is end-to-end trainable, works directly from raw sensory data (e.g., images) and only
requires the knowledge of class of primitive sub-tasks performed during the demonstration to accomplish the
end task, without any need of segmentation or ordering of primitives. The key idea is to make per-time step
prediction corresponding to each sub-task and accumulate them to generate a trajectory-level predictions which
are then trained to match trajectory-level tags.

label. However, this per-step segmentation supervision is tedious for the expert and too expensive to
scale. Moreover, such a labeling would be biased towards what expert thinks is the right segmentation
than towards a segmentation which helps learn the skills better. This leads to the question: is it
possible to use the expert knowledge to only know the types of skills present in demonstration and
figure out the segmentation from the data itself?

Inspired by the classic work in multiple instance learning (MIL) (Dietterich et al., 1997; Andrews
et al., 2002; Felzenszwalb et al., 2010; Pinheiro & Collobert, 2015; Pathak et al., 2015a), we propose
a weakly-supervised approach for segmentation of human demonstration trajectories into primitive
repeatable skills. Our approach assumes the access to only trajectory-level labels, i.e., what primitive
skills, aka sub-tasks, are present in the demonstration. The key insight is to learn a primitive skills
classifier model conditioned on the input sensory data (e.g. demonstration images), and incorporate
a per-time step reasoning structure in this classifier. An overview of our approach is shown in
Figure 1. Our model generates per time-step primitive skill label prediction estimates which are then
accumulated via differentiable function to generate trajectory-level predictions. In contrast to classic
MIL, where only the most confident prediction across time-steps is trained, our full model is trained
end-to-end using trajectory-level multi-class loss directly from raw sensory images.

We evaluate our approach in four different environments. Across all these environments, our approach
outperforms the other variants of MIL and achieves decent segmentation accuracy. We then show
zero-shot generalization to tasks containing novel permutations of skills in the Jaco environment.

2 METHOD: SEGMENTING DEMONSTRATIONS INTO SKILL PRIMITIVES

Given a collection of human demonstration trajectories, our goal is to learn a labeling for skill
primitives at each time-step of the sequence, i.e., per time-step skill segmentation. Let X be a
human demonstration trajectory denoted by X = {x1, x2, x3 . . . xT }, where T is the length of the
demonstration and xt denotes a tuple of observation (which is raw sensory image in our case) at time t
and action taken from it. Note that the action data is optional for the purpose of skill segmentation, but
can be useful post segmentation for learning skill policies via imitation. Let Y = {y1, y2, y3 . . . yT }
be the latent ground truth labeling of skill primitives in the sequence. Each label yt belongs to one of
the k labels from a set of all skill classes C = {1, . . . , k}, i.e., yt ∈ C. These per time-step labels are
not only tedious for expert to annotate, but also difficult to scale. In this work, we do not assume
access to yt during training, and learn the per time-step segmentation in a weakly-supervised fashion
by only using trajectory-level 1-bit label during training, i.e., whether a skill class is present in the
trajectory or not. After training, our model is able to directly segment demonstrations at inference,
without requiring any labels of any kind. An overview of our method is shown in Figure 1.

The marginal probability of a skill primitive at each time-step of demonstration can be written as
P (yt|θ, {xt, xt−1 . . . , x1}) where θ is the parameter vector of the segmentation model represented by
a neural network in our case. If we had access to the true sequence labels Y , the network parameters
θ can be easily learned via maximum log-likelihood by representing the probability as follows:

P (yt|θ, {xt, xt−1 . . . , x1}) =
1

Zt
exp

(
f(yt; θ, {xt, xt−1 . . . , x1})

)
(1)

2

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

where Zt is the partition function at t, defined as Zt =
∑

k∈C exp
(
ft(k; θ, {xt, xt−1 . . . , x1})

)
. The

output of the function ft corresponds to the logit score value generated by the neural network. In
order to model temporal dependency on across observation time-steps xt, we represent f(.) via a
recurrent neural network, in particular, LSTM (Hochreiter & Schmidhuber, 1997).

2.1 WEAKLY-SUPERVISED TRAJECTORY SEGMENTATION

We are given a dataset of demonstration trajectories during training, D = {X1, . . . , Xn}, where n
is total number of demonstrations available for training. Each demonstration trajectory is weakly
labelled with what skill primitives are contained within the trajectory. Neither do we have access
to which time-step densely correspond to which skill primitive, nor to the permutation in which the
skills are executed in. Instead, we are only given a set of skill primitive labels CX ∈ C present in the
demonstration trajectory X .

Although our supervision is only at trajectory-level, we do not directly predict output label-
ing CX from input demonstration X . Instead, we instill the structure of per-step prediction in
our weakly supervised segmentation model by first computing the per-step classification score
f(yt; θ, {xt, xt−1 . . . , x1}) and then accumulate it across all time-steps to compute the probability
of a class in the whole trajectory. This weakly-supervised setup is captured by classical paradigm
of multiple instance learning (MIL) (Andrews et al., 2002). At inference, we use this per time-step
score to compute the probability of skill primitives at each time t as described in Equation (1). There
are multiple ways one could accumulate these per time-step scores discussed as follows.

2.2 ACCUMULATION OF TIME-STEP PREDICTIONS

Intuitively, we would like an estimator that could generate an aggregated score for the class depending
on how much each time-step votes for that class. We would ideally like the highest score value across
time-steps to contribute most to the decision whether a class label ŶX is present in the trajectory
X or not. One simple way to achieve that is to employ element-wise max operator, which is also
the de facto approach in MIL to accumulate element-level scores. However, this would amount to
passing gradients only to the most confident time-step and will completely eradicate the role of other
time-steps. This is especially problematic in case of sequential trajectories because no skill primitive
will be of only 1 time-step long. Hence, instead of max, we use a soft approximation to it which can
take into account the contribution of all time-steps. In particular, we use log-sum-exp operator.
Given the the logit score f(yt; θ, {xt, xt−1 . . . , x1}) at each time-step, the trajectory-level logit score
g for class c ∈ C is computed as follows:

g(c; θ,X) = log
(T∑

t=1

exp
(
f(yt = c; θ, {xt, xt−1 . . . , x1})

))
(2)

We perform this operation for all c ∈ C and use softmax over g(c; θ,X) to compute trajectory-level
probability distribution Q(c|X, θ). Finally, the parameters θ are optimized to maximize Q(c|X, θ)
for each class c with respect to the ground truth trajectory level tags CX . Note that this optimization
is fully differentiable through Equation 2, and hence can be optimized via stochastic gradient descent
in the end-to-end fashion. Pinheiro & Collobert (2015) has also showed the effectiveness of a
temperature-based variant of log-sum-exp operation for semantic segmentation in images.

However, these per-step scores f would be almost uniformly random in the beginning of the training
process due to the absence of per-step supervision. Since we are training with only trajectory-
level supervision, why should these per-step predictions should ever converge to meaningful skill
segmentation? It turns out to be the case because we are learning across large variety of demonstration
examples. Hence, for each skill primitive we would have seen plenty of positive as well as negative
trajectories. The loss suppresses the negative classes and encourages the positive ones, hence our
segmentation model would be forced to focus on discriminative cues that are exclusively common
among the trajectories containing the skill primitives and not common to the cues that help distinguish
other skills. Since our trajectory-level segmentation is based on a deterministic transformation of
per-step predictions, each per-step score will then be forced to focus on those discriminative cues.
The discriminative nature encourages the per time-step predictions to slowly drift towards the true
latent ground truth segmentation which are not available directly.

3

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Method Dial Jaco Manipualtion RoboSuite Manipulation

Train Val Test Train Val Test

Random 10.00 10.0 10.0 25.00 25.00 25.00
Random-Cls 36.00 36.00 20.00 33.00 33.00 25.00

CCNN 9.05 9.58 10.70 31.92 22.24 21.80
FCN-MIL 64.42 59.64 57.81 29.79 23.76 22.21
MIL 19.02 15.89 14.00 35.95 28.81 28.69

Ours 61.57 59.52 59.93 44.96 37.67 33.88

Table 2: We show the segmentation performance across dif-
ferent methods on train, validation, and test datasets for Dial
Jaco and RoboSuite Object Manipulation. (a) Dial Jaco: we
train our segmentation model on trajectories with three to four
subtasks and test with five subtask trajectories. (b) Robosuite:
we train our segmentation model on trajectories with three
subtasks and test with four subtask trajectories. Our approach
outperforms all baselines by significant margin on test set for
both environments.

Method Acc w/o Reject Acc w/ Reject Zeroshot

CCNN 9.58 28.08 -
FCN-MIL 59.64 68.58 38.8
MIL 15.89 50 39.6

Ours 59.52 79.01 50.4

Table 3: Quantitative Zero-Shot results
on Dial Jaco Manipulation: This table
shows the comparison of performance across
different methods. The first two columns
reports the segmentation accuracy on vali-
dation set without and with minimum of 5
time-step segment rejection. The last column
shows the zero-shot subtask success rate on
5 subtask tasks. Our method has better post
5 time-step segment rejection segmentation
accuracy and zero-shot subtask performance.

3 RESULTS

Baselines We compare our approach to different formulations of weakly-supervised classification
proposed earlier. (a) MIL (Andrews et al., 2002): we train the deep segmentation model using
Classic MIL formulation as proposed by Andrews et al. (2002). We penalize the most confident

Method Test Accuracy
CCNN 11.17
FCN-MIL 19.10
MIL 24.37

Ours 44.22

Table 1: Results on MIME
dataset. We test our segmentation
model on held out test trajectories
not seen during training.

time-step in the output corresponding to each sub-class to correctly
predict the trajectory-level classes. (b) FCN-MIL (Pathak et al.,
2015b): This approach is an adaptation of MIL for deep-networks
where we train a neighborhood of k-elements near the most confident
time-step (we used k=3). (c) CCNN (Pathak et al., 2015a): This
approach was originally applied for per-pixel segmentation of images
in (Pathak et al., 2015a), and we adapt it for temporal trajectories.
(d) Random: randomly pick a sub-task class at every time-step with
uniform probability. (e) Random-Cls: This is a random baseline with
privileged class information even at test time, i.e., uniformly sample
from the set of classes that are already present in the trajectory.

We evaluate our approach and other baselines on four datasets (see Figure 2) with very different
characteristics. The 2D Grid-world environment has a discrete action space, while the Dial, RoboSuite,
and MIME environments have a continuous action space. The Grid-world and Dial environments
have demonstrations collected procedurally by hand-designed controllers, while the RoboSuite and
MIME environments have demonstrations collected by humans. Human demonstrations in RoboSuite
are collected via teleoperation and kinesthetically in MIME. Grid world, Dial and Robosuite are
in simulation while MIME is from a real robot. The subtasks in each environment toy Grid-world
(results in appendix), Dial, RoboSuite, and MIME in order are eat one of 4 colored boxes, dial one of
10 digits, pick and place one of 4 different types of objects, and perform one of 6 actions on object(s).
More details can be found in appendix.

As can be seen in Table 1 and 2 our model outperforms all other baselines in dense segmentation
accuracy of test sets. Learning perfect segmentation in many of the environments is challenging such
as in the RoboSuite environment because there is very little signal in most of the trajectories of each
subtask to signify exactly which object will be picked up until near the end of the primitive where
the object has been picked up. In table 3 we show that if we behavior clone skill policies with the
segmented data with rejection of small consecutive segments, in the zero-shot execution of new and
longer length sequences of subtasks our method outperforms all other baselines. More details can be
found in appendix.

Discussion Obtaining primitives from existing experience and composing them to perform novel
tasks presents a viable paradigm for tackling generalization to novel tasks. Due to the combinatorial
nature of composition, this approach allows generalization to exponentially many scenarios with a
linear number of primitives. This work provides an end-to-end trainable formulation for extracting
primitives. These extracted primitives, a.k.a ‘macro’ actions, provide an alternative scaffolding which
could bootstrap the hierarchy in a bottom-up manner.

4

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

REFERENCES

Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector machines for multiple-
instance learning. In NIPS, 2002. 2, 3, 4

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
NIPS, 2017. 1

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 2009. 1

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017. 1

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in neural information
processing systems, pp. 271–278, 1993. 1

Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. Solving the multiple instance
problem with axis-parallel rectangles. Artificial intelligence, 1997. 2

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint, 2018. 1

Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection
with discriminatively trained part-based models. IEEE Tran. PAMI, 2010. 2

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997. 3

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 2017. 1

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian
Gao, John Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese, and Li Fei-Fei. Roboturk: A
crowdsourcing platform for robotic skill learning through imitation. In Conference on Robot
Learning, 2018. 7

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In NeurIPS, 2018. 1

Deepak Pathak, Philipp Krähenbühl, and Trevor Darrell. Constrained convolutional neural networks
for weakly supervised segmentation. In ICCV, 2015a. 2, 4

Deepak Pathak, Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional multi-class
multiple instance learning. In ICLR, 2015b. 4

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot visual imitation. In
ICLR, 2018. 1

Pedro O Pinheiro and Ronan Collobert. Weakly supervised semantic segmentation with convolutional
networks. In CVPR, 2015. 2, 3

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In ICML, 2015. 1

Pratyusha Sharma, Lekha Mohan, Lerrel Pinto, and Abhinav Gupta. Multiple interactions made easy
(mime): Large scale demonstrations data for imitation. arXiv preprint arXiv:1810.07121, 2018. 8

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, and Ingmar Posner. Taco:
Learning task decomposition via temporal alignment for control. arXiv preprint arXiv:1803.01840,
2018. 7

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press
Cambridge, 1998. 1

5

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.
1

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3540–3549.
JMLR. org, 2017. 1

6

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

(a) 2D Navigation (b) Dial Env (c) RoboSuite Env (d) MIME Env

Figure 2: We evaluate across four environments with different properties: (a) Discrete 2D Navigation as proof
of concept. (b) Dial continuous control: Jaco robotic arm based manipulation with procedurally generated
demonstrations. (c) RoboSuite environment: Sawyer robot in simulation with human-collected demonstrations.
(d) MIME environment: Baxter robot in real world with human demonstrations. Result videos at https:
//sites.google.com/view/trajectory-segmentation/.

A APPENDIX

A.1 PROOF OF CONCEPT: 2D NAVIGATION IN DISCRETE TOY GRID-WORLD

Method Train Val Test
Random 20.00 20.00 20.00
Random-Cls 36.00 36.00 20.00

CCNN 65.27 64.63 60.24
FCN-MIL 91.28 91.88 91.58
MIL 90.78 91.08 91.08

Ours 100.00 100.00 100.00

Table 4: This environment serves as only a
proof of concept. Since the environment is
a simple 2D grid with skill primitive indica-
tor cell at the bottom, an efficient approach
should be able to achieve almost full accu-
racy. Our method is able to perfectly segment
the data into ground truths, while other base-
lines can not despite easily separable skills.

In the grid-world environment, the action space consists
of moving up, moving down, moving left, moving right,
and picking up object it is hovering over. There are 5
different types of objects uniquely identified by their color
and an end task would consist of picking up some subset
of all the objects in a particular order. The primitives are
defined as picking up a specific type of object. We train
our segmentation model on trajectories with 2-4 skill prim-
itives and test with 5 skill trajectories. Each instantiation
of the environment has a different starting position of the
agent, different starting position of the objects, and differ-
ent set of objects needed to be grabbed. The image inputs
used are 33 by 30 resolution color images, and the max
trajectory lengths are 50. This environment serves as toy
scenario for proof of concept. At the bottom-left of the
image, there is an indicator which suggests which skill
is being executed. Hence, an efficient approach should
achieve 100% accuracy, as is the case with our method as shown in Table 4.

A.2 DIAL CONTROL ENVIRONMENT: JACO ROBOTIC ARM BASED MANIPULATION

In the Dial environment, proposed in (Shiarlis et al., 2018), there is a torque-controlled JACO 6 DoF
arm and a dial pad that the arm can interact with which is simulated in MuJoCo. There are naturally
10 different types of primitives available in this environment corresponding to pressing numbers zero
through nine. We train our segmentation model on trajectories with two to four sub-tasks and test
with five sub-task trajectories. Each instantiation of the environment has a different sequence of
numbers it expects to be dialed in the correct order. The image inputs used are 112 by 112 resolution
gray-scale images, and the max trajectory lengths are 100.

Our method performs similar to FCN-MIL on the train/val, and better on test. It significantly
outperforms the other baselines (Table 2). However, we show that our segmentation are more useful
for zero-shot execution performance as explained in Section A.5. Learning perfect segmentation in
the Dial environment is very challenging because there is little signal in most of the trajectory for
each skill to signify exactly which digit will be pressed until the arm reaches proximity of the digit.

A.3 ROBOSUITE ENVIRONMENT: SAWYER ROBOTIC ARM BASED OBJECT PICK AND PLACE

The RoboSuite environment (Mandlekar et al., 2018) has a Sawyer 7 DoF arm and four different
objects (bread, can, cereal, and milk) that the arm can interact with simulated with MuJoCo physics
engine. There are four different types of primitives available in this environment corresponding to

7

https://sites.google.com/view/trajectory-segmentation/
https://sites.google.com/view/trajectory-segmentation/

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

pick and place of bread, can, cereal, and milk to correct corresponding bin. We train for trajectories
with two to three skill primitives and test on trajectories with four skill primitives. Each instantiation
of the environment has a different sequence and set of objects that need to be picked up and placed
into their corresponding bins. The image inputs used are 128 by 128 resolution color images and the
max trajectory lengths are 100.

Our method significantly outperforms all baselines in full trajectory segmentation by a significant
margin. Only MIL performs above random present class on validation and test datasets. Learning
perfect segmentation in the RoboSuite environment is also very challenging because there is very little
signal in most of the trajectories of each subtask to signify exactly which object will be picked up until
near the end of the primitive where the object has been picked up. The “pick object” portion of human
demonstrations is usually much longer than the “place object” part because with the tele-operation
setup the human stumbles a little bit until fully gripping the object. After the object is in the gripper,
placing object in bin is a quick reach to the correct bin for the object.

A.4 MIME ENVIRONMENT: BAXTER ROBOTIC ARM BASED MANIPULATION

MIME is a robotic-demonstration dataset that contains 8260 human-robot video demonstrations of 20
different robotic tasks (Sharma et al., 2018). We defined the following primitives for a subset of this
dataset: reach for object, pour out object, stir inside object, stack objects, place object in box, wipe
with rag (6 primitives). All videos have two primitives where one is to reach for object and the other
is the action to do with or on the object. There is a held out test dataset for each robotic task which
we use for evaluation. The image inputs used are 120 by 320 resolution grayscale images and the
max trajectory lengths are 100. Our method beats all other baselines in full trajectory segmentation
by at least 1.8x on the test set (Table 1).

A.5 ZERO-SHOT RESULTS: JACO MANIPULATION

We use our segmentation model to create sub-datasets for each of our primitives to train a behavior
cloned skill policy for each. We then test our skill policies on performing higher sequence length
tasks not seen in training data. During the creation of the sub-datasets, we rejected all segments
smaller than 5 consecutive timesteps of the same labelled primitive. We applied gaussian smoothing
on the segmentation prior to extraction to filter out noisy predictions.

We demonstrate the zero-shot capability of our model and baselines on the Dial control environment
in Table 3. Our model performs at least 1.25x better than all baselines. We also show that although
FCN-MIL had the same segmentation accuracy as our method, after rejecting smaller than 5 timestep
segments our method has a significantly higher post rejection segmentation accuracy. We speculate
this is due to our model committing less to a wrong prediction than the baselines. Therefore wrong
predictions are more easily rejected with our segmentation model.

B IMPLEMENTATION DETAILS

Our segmentation model consists of a convolutional neural network encoder of each image of a
trajectory and a one layer fully connected encoder of the action to a 32 dimensional feature that is
concatenated to the image feature before being fed into an LSTM with 100 hidden units. We train
with a batch size of 64 for the Dial, RoboSuite, and MIME environments and a batch size of 128 for
the Grid-world environment. All models were trained with Adam with learning rate of 1e-4. For
training, we use 50000, 2000, 1000, and 1600 trajectories for 2D Navigation, Dial, RoboSuite, and
MIME Environments respectively. We evaluate our method on the training set, a validation set that
consists of the same number of skill primitives (sub-tasks) per trajectory as in training, and a test set
that consists of more skill primitives per trajectory than seen in training. The segmentation quality is
measured by classification accuracy of the learned model averaged across all time-step. The time-step
ground truth is only used for evaluation and not for training.

8

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

S
u

b-
T

as
k

#
 7

S
u

b-
T

as
k

#
 4

S
u

b-
T

as
k

#
 6

S
u

b-
T

as
k

#
 1

S
u

b-
T

as
k

#
 2

S
u

b-
T

as
k

#
 3

(a) Dial Env: Jaco arm (b) RoboSuite Env: Sawyer arm

S
u

b-
T

as
k

#
 1

S
u

b-
T

as
k

#
 2

S
u

b-
T

as
k

#
 3

S
u

b-
T

as
k

#
 4

(c) MIME Env: Baxter arm

Figure 3: Figure shows qualitative visualization of the skills (sub-sampled) discovered by our approach on
held-out test set. (a) Dial Env: learned primitives using Jaco arm manipulation are shown. Skill # N corresponds
to the arm dialing number N on touch pad. (b) RoboSuite Env: Three predicted primitives are shown where the
primitives are to pick and place an object into corresponding bin (top to bottom: cereal, milk, box) (c) MIME
Env: Four discovered primitives are shown starting from top left clockwise: reach to object, wipe, stir inside
object, and pour out object.

9

