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ABSTRACT

Throughout our lives, we as humans acquire an intuitive understanding of our
physical environments, a capacity that supports our imagination and planning
abilities. Driven by our own curiosity, we learn about object motion and properties
via self-curated targeted experiments, that teach us what we do not know. Recently,
neural network models have been proposed that learn forward object dynamics
from observations like humans. Unlike humans, these models do not actively
interact with surrounding objects but learn from human-curated datasets as passive
observers. In this work-in-progress, we propose a closed-loop system that teaches
itself about forward object dynamics without any human intervention. Our model
consists of two parts. A forward dynamics model that models the transition
between states and a policy model that tries to predict the dynamics model’s
error conditioned on object interactions as its intrinsic reward. We show that our
method is able to train forward dynamics models that generalize to unseen physical
scenarios and approaches the upper bound of models trained on human-curated
data. The model generates complex behaviors with a preference to novel objects.

1 INTRODUCTION AND RELATED WORK

Cognitive science literature suggests that humans run physics simulations in their mind to plan and
imagine the future (Battaglia et al., 2013; Bates et al., 2015; Hamrick et al., 2011; Ullman et al.,
2014; Hegarty, 2004; Lake et al., 2017). Experiments show that humans are most likely born with
a built-in basic understanding of objects and physics (Spelke & Kinzler, 2007) which gets refined
through active experimentation with their environment driven by what is widely known as curiosity
(Gopnik et al., 2009; Schmidhuber, 2010). In this work, we build on these insights by proposing a
self-learning system that (a) relies on a trainable future predicting world-model with explicitly built-in
structure and (b) that is trained through active learning driven by an intrinsic curiosity mechanism.

Recently, several approaches have been proposed to learn about physics from observations (Agrawal
et al., 2016; Finn et al., 2016; Byravan & Fox, 2017; Bates et al., 2018; Tacchetti et al., 2018;
Sanchez-Gonzalez et al., 2018; Battaglia et al., 2018; Ajay et al., 2019). Given trajectories of physical
systems, such as a ball falling on the ground or two cubes colliding, models are trained to predict
the future state of the system. Similarly to humans (Spelke & Kinzler, 2007), some of the best
forward dynamics models build in object-, part- and relation-centric priors for learning physics
(Chang et al., 2016; Battaglia et al., 2016; Mrowca et al., 2018; Li et al., 2018). We seek to combine
a model-based reinforcement learning approach with an explicit dynamics model to model human
interactive physical learning.

In the following, we explore how artificial agents can teach themselves about physics through object
interactions in a box environment. The agent may apply forces on up to three objects in a box as
shown in Figure 1. We propose a self-supervised system that trains an accurate forward dynamics
model by taking intrinsically-motivated actions. Many curiosity-driven methods have been proposed
(Chentanez et al., 2005; Oudeyer et al., 2007; Singh et al., 2010; Schmidhuber, 2010; Frank et al.,
2014; Oudeyer & Smith, 2016; Achiam & Sastry, 2017; Pathak et al., 2017; Burda et al., 2018). We
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build on previous work in which curiosity was used to supervise a latent physical dynamics model
Haber et al. (2018) to supervise an explicit and interpretable forward dynamics model capable of long
range prediction. Using a loss estimation network, we perform a search to find the maximum intrinsic
reward for a single-step policy to maximize the model’s learning. We show that our interactively
trained dynamics model approaches the performance of models trained on manually created expert
training datasets when generalizing to unseen scenarios. We demonstrate a preference for hard to
learn objects and interactions in the agents behavior.

2 METHODS

Our system consists of a world-model (forward predictor) learning online from the agent’s interactions
with an environment. The agent chooses forces on objects with a self-model, which aims to find
interesting data for the world-model. In what follows, we describe the environment and hierarchical
particle relationship graph representation of objects that our models have access to. We then review
the Hierarchical Relation Network Mrowca et al. (2018) world-model, before describing the graph-
convolutional self-model architecture.
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Figure 1: Environment and Model. Left: Box environment with red ball, green cloth, and blue
cube decomposed into a particle relationship graph GH . The agent can apply forces to the objects to
generate physical scenarios of interest. Right: Given past observations G(t−T,t]

H , the world-model
(top right) predicts the next environment state and occurs a loss. The self-model (bottom) predicts
the world-model loss given G(t−T,t]

H and randomly sampled actions. The action with the highest
predicted loss is greedily executed.

Environment. Our environment (Figure 1 left) consists of a 5 x 5 x 5 unit box in which one to
three objects of different shapes (cone, cube, cuboid, cylinder, ellipsoid, prism, pyramid, sphere,
stick, torus) and materials (rigid, soft, cloth) are placed. To train its forward predictor, the agent is
then tasked to perform short, fixed-length “experiments”, with the following interface. (1) At the
beginning of the experiment, the objects are randomly placed in the box. (2) The agent can then
apply forces anywhere within the box in fixed intervals. The agent chooses the centers, directions,
magnitudes, and standard deviations of these forces which are applied to object particles within one
standard deviation of the centers, with magnitude proportional to a truncated Gaussian about the
center. Intuitively, the agent “pokes” around in the entire box with its fingers and if it hits an object,
the object will move. (3) Finally, the scene is reset and the whole process is repeated.

Hierarchical Particle Relationship Scene Graph Representation. In this work, we assume that
the agent observes a particle representation of each object in the box. From this particle representation,
we construct a hierarchical particle relationship scene graph representation GH as seen in Figure 1.
Graph nodes correspond to either particles or groupings of other nodes and are arranged in a hierarchy,
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whereas edges represent constraints between nodes (e.g. materials). For a detailed description of this
representation, please see Mrowca et al. (2018).

Forward Predictor World-Model. We use the Hierarchical Relation Network (HRN) as proposed by
Mrowca et al. (2018) as the world-model (Figure 1 bottom). The HRN takes a history of hierarchical
graphs G(t−T,t]

H as input. The model first computes collision (φWC ), external force (φWF ), and past
effects (φWH ) between particles using pairwise graph convolutions. The effects are then propagated
through the particle hierarchy using a hierarchical graph convolution module ηW . Finally, the fully-
connected module ψW computes the next particle states P t+1 from the propagated effects and past
particle states. The world-model is optimized with an l2 loss on next state particle velocities and
pairwise distances. The HRN can be unrolled across an arbitrary number of time steps by feeding
back its predictions as input.

Action-Proposing Self-Model. We propose a graph convolutional self-model that takes, as input,
observation information, and produces a probability distribution over the action space that the agent
samples from. The probability distribution is derived as follows: we propose actions for which we
explicitly predict the loss of the world-model, and from that we choose that action with the predicted
maximum loss. In doing so, the self-model chooses a policy so as to antagonize the world model.
Intuitively, the world-model loss is the result of interaction of objects, objects and forces, and the
coordination of forces applied to objects. Thus, the self-model has three components: an object-object
effects component, an object-force effects component, and a force-force effects component. An
object- and action-centric representation proved to be crucial. Intuitively, it does not matter if the
same force is applied to an object with the left or right hand.

3 EXPERIMENTS

We evaluate the physical understanding and behavior of our self-supervised agent. We first train
forward dynamics models on manually constructed action subsets and show that a diverse set of
actions is necessary for generalization. We then compare the curiosity-driven agent against the agent
trained on hand-designed data and demonstrate the curious agent’s superior generalization to unseen
scenarios. Finally, we analyze the behavior of our curiosity-driven agent and study its preference
towards hard to predict objects and interactions.

Table 1: Dynamics model particle position
mean-squared-error (MSE) for 20 time step
predictions trained (T) and validated (V) on
different action subsets.

T \ V Lift Slide Collide Stack All
Lift 0.18 6.07 5.29 1.93 3.37

Slide 2.32 0.28 0.87 2.96 1.61
Collide 1.77 0.51 0.52 18.74 5.39
Stack 5.10 5.56 4.58 0.39 3.91

All 0.21 0.38 0.51 0.36 0.37
Shapes ↓ 0.22 0.49 0.47 0.32 0.38

Materials ↓ 0.22 0.52 0.53 0.35 0.41
# Objects ↓ 0.22 0.66 0.69 0.45 0.51

Dynamics Model Accuracy and Generalization.
To evaluate our forward dynamics model accuracy
and generalization ability, we hand design separate
training and validation datasets with objects of dif-
ferent shapes (cube, sphere, cone, octahedron, pen-
tagon, bowl, prism) and materials (various levels
of softness) consisting of the following subsets: (1)
A lift subset, in which objects are repeatedly lifted
off the ground and undergo parabolic motion. (2) A
slide subset, in which objects are repeatedly pushed
around on a surface under friction. (3) A collide
subset, in which objects are repeatedly collided into
each other. (4) And a stack subset, in which objects
are repeatedly placed on top of each other forming a
(un)stable stack depending on object geometry. Each subset consists of 90,000 training and 10,000
validation states.

Given two initial states, the dynamics model is trained to predict the next future state(s) at 100 ms
intervals. We train separate models on each train subset and a model on all subsets and evaluate
each model on all validation subsets by measuring the mean-square-error (MSE) between predicted
and true particle positions. Table 1 summarizes the results for 20 time step predictions. While the
dynamics model predicts the action subsets well on which it was trained on, it generalizes poorly to
held-out action subsets. Only if trained on all subsets, does the model perform well on all of them
and improves on the collide and stack subset benefiting from observing different action types during
training. We also explored material, shape, and object number ablations, but found that the dynamics
model generalizes well across these axes, due to its particle-centric architecture (see Table 1).
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Dynamics Model Performance under Different Policies. As the hand designed data contains only
a small subset of all possible object interactions, a curiosity-driven model interacting with objects in
a box should be able to generate more varied training data for the dynamics model which thus should
generalize better to unseen scenarios. This hypothesis is evaluated in the following on held-out test
sets generated using the same procedure as before but with two additional shapes (pyramid, cylinder).

Table 2: Dynamics model performance on test
set (T) under different policies (P).

P \ T Lift Slide Collide Stack #F #C
RP 0.54 0.69 0.61 0.82 0.12 4.7e-4

ORP 0.33 0.56 0.45 0.80 1.0 0.023
CP 0.46 0.52 0.44 0.59 0.13 4.5e-4

HDP 0.15 0.14 0.23 0.26 - -

We compare dynamics models trained on data fol-
lowing policies that randomly select forces within
the box (RP), randomly select forces on objects
(ORP), or follow the hand designed policy (HDP)
with dynamics models trained on data generated
by our curiosity-driven driven policy (CP).

The dynamics model trained with RP does poorly.
Given the size of the objects and the box, the ma-

jority of the box is empty and thus random forces rarely result in object motion. Random forces
on objects (ORP) train a better dynamics model that however lacks in accuracy on stacks. Models
trained with HDP, are trained on very similar interactions as tested on, providing an upper baseline.
CP outperforms RP and ORP but does not reach HDP accuracy. We think this is due to CP not
planing multiple steps ahead. CP applies forces which result in object collisions during training but
eventually reaches an equilibrium with low force and collision count. Note that this quantitative
difference is almost unnoticeable in qualitative rollouts. This is quite remarkable as the agent has no
prior knowledge about objects and interactions unlike the expert who hand designed the data. Figure
2 shows how well CP generalizes to the lift and collide subset despite never being explicitly trained
on any of those scenarios. A model only trained on the lift subset works well on lift test data but does
not generalize to collide data.

GT

Lift

CP
t+10 t+15 t+20t+5t t+10 t+15 t+20t+5t

Lift scenario Collide scenario

Figure 2: Lift and Collide test rollouts. Dynamics model predictions trained on Lift and with CP
are compared against ground truth (GT). CP works well on both, Lift only on the Lift scenario.
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Figure 3: Object preferences.

Policy Model Behaviors and Preferences. We observe that the
curiosity-driven agent learns to apply forces to objects and to
collide objects into each other. To examine whether the agent
shows a preference towards certain object shapes we systemati-
cally juxtapose two objects by placing them in the box and letting
the agent choose to apply only one force. We measure how often
the agent chooses to apply a force to one shape over the other over
multiple trials. Figure 3 summarizes the results. We can see that
the agent has a slight preference towards the unseen geometries
(pyramid, cylinder) starred in the figure. Within the seen shapes,
the agent develops a hierarchical order of preferences towards
certain geometries (pyramid over sphere, sphere over octahedron)
which indicates that these geometries are particularly hard to
learn in comparison to the rejected shape and should be enriched
in the training data.

Conclusion and future work. For future work, we are currently developing a curious tree search
method for multi-step planning. Using the world-model, we choose actions at each layer of the tree
by sampling according to the expected loss, and sum to the leaves of the tree in order to choose
the maximally rewarding trajectory. We find this model shows behavior enriched for long horizon
high loss states, such as collisions. Finally, we would like to compare our model’s object and action
preferences to human preferences with the goal of explaining infant play and human curiosity.
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