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ABSTRACT

From early in infancy, humans’ capacity for physical reasoning is crucial to how
they understand and interact with the world. By contrast, modern artificial intel-
ligence systems struggle to realize even basic physical intuition. Here we present
“Object History and Memory Interactions” (OHMI)—a deep learning approach
for predicting the future of 3D physical scenes from segmented images. We ex-
plore its ability to learn a range of physical concepts, evaluating the knowledge it
acquires using a standard experimental methodology from development psychol-
ogy called “violation of expectations”. Our results show the model benefits from
object-centered representations and computations, an observation that resonates
with notions of core object knowledge from developmental psychology.

1 INTRODUCTION

Understanding the world in terms of objects is key to human intelligence. From early infancy, we
form rich expectations about objects’ properties, how they interact with one another, and how they
persist through time (Baillargeon et al. (1985); Spelke et al. (1992)), and our object-centered per-
ceptual and cognitive faculties are instrumental to how we learn, communicate, remember, explain,
and interact with our environment.

These points have been increasingly brought to bear in AI research aiming to match human intelli-
gence in the domain of intuitive physics. The net result is an increase in the number of AI systems
endowed with object-centered representations and computations (Burgess et al. (2019); Greff et al.
(2019); Kipf et al. (2019); Battaglia et al. (2016)). Despite this, current artificial learning systems
have failed to match the intuitive physics capabilities even of infants.

In this work, we introduce an approach termed “Object History and Memory Interactions” (OHMI)
which operates by calculating interactions between the model’s memory of objects and veridical
object histories. To measure the knowledge which our model has learned, we adopt the “violation of
expectations” (VOE) paradigm—a standard measure from human development psychology which
has been used widely for assessing infants’ understanding of intuitive physics.

Our model achieves strong VOE results over a diverse set of physical concepts, a currently unprece-
dented result for models which learn object dynamics. Furthermore, we show that these results are
dependent on: 1) object-centered computation and 2) allowing the model to operate over the full
object histories at each timestep.

2 MODEL

2.1 OBJECT HISTORY AND MEMORY INTERACTIONS (OHMI)

The OHMI model is a next-step predictor trained on videos depicting the physical interactions of
3D objects. OHMI has three components: an encoder Φ, a recurrent dynamics predictor ∆, and
a decoder Θ. For a segmented image tuple, X = (x,m1:n) where x is an image, and m1:n are
ordered per-object masks, Φ produces a set of learned object codes z1:n, such that Φ(X) ⇒ z1:n.
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For a history hist1:nt = z1:n1≤t, and object memories cell1:nt−1, ∆ predicts the object codes at the next
timestep: ∆(hist1:nt , cell1:nt−1)⇒ ẑ1:nt+1. The decoder reverses the encoder, with Θ(z1:n)⇒ X .

We pretrain Φ and Θ in tandem via a Component Variational Autoencoder (ComponentVAE)
(Burgess et al. (2019)) on individual images. The VAE is trained to transform X to learned codes
z1:n, and then back to X using the standard variational objective. Analysis shows that dimensions
in z correspond to rough analogs of object position, color, and shape (examples in Appendix). Ad-
ditionally, because our decoder outputs an image and per-object masks, we can render a per-object
image,

˜
xk or combine them to produce a single composite image

˜
x.

Our recurrent dynamics predictor, ∆, uses a ComponentLSTM: an object-wise LSTM with shared
weights, but object-specific activations. At each timestep, the LSTM for the ith object computes
the following: ẑit+1, cell

i
t, hidden

i
t = LSTM(histit, cell

i
t−1, hidden

i
t−1). Intuitively, we expect

that the cell state of each LSTM tracks its corresponding object in the scene and thus we refer to
it as the object memory. This computation is sufficient to predict dynamics of objects in isolation,
but we also must be able to compute the influence of objects on each other, which we do by an
Interaction Network (Battaglia et al. (2016)). Because we care about interactions even when objects
are occluded (only represented in object memory), we compute interactions from the object memory
to both the object memory and the object history inputs. For the ith object memory contained
in cellit−1, we compute: inti = IN(from = cellit−1, to = [cell1t−1 : n;hist1:nt ]) We add the
corresponding interactions as an additional input to the ith LSTM, yielding the final form of the
ComponentLSTM computation: ẑit+1, cell

i
t, hidden

i
t = LSTM(histit, cell

i
t−1, hidden

i
t−1, inti)

See A.1 in Appendix for an illustration of these modules.

2.2 LOSS

We learn object dynamics by training ∆ as a deterministic1 next-step predictor. At each timestep,
we give the the predictor ∆, hist1:nt . From this, ∆ produces a prediction for the object states at the
next timestep, ẑ1:nt+1. To form a prediction target, we compute the actual z1:nt+1 = Φ(Xt+1), where
Xt+1 is the image-mask for the next time step. During training we optimize for the loss at the level
of per-object codes (Lcodes = ||ẑ1:nt+1 − z1:nt+1||). Other losses are also reasonable and are examined
in evaluation: per-object images (Lobject pixels = ||

˜
x̂1:n
t+1−

˜
x1:n
t+1||), and per-object images excluding

the background(Lfg object pixels = ||
˜
x̂2:n
t+1 −

˜
x2:n
t+1||). See A.2 in Appendix for training details.

3 DATASET

3.1 GENERIC PHYSICAL EVENTS

Our training dataset consists of 300,000 randomly generated scenes each containing two to four
physical event building blocks. We have 14 composable building block types intended to span a
wide set of physical phenomena including: rolling, collisions along the ground plane, collisions
from throwing or dropping an object, occlusions (via a ”curtain” that descends from the top of the
screen and retracts), object stacks, covering interactions, containment events, and rolling up/down
ramps. We restrict the primitive shapes in our dataset to rectangular prisms and spheres. From
the rectangular prisms we build a “curtain,” a ramp, an arch, and both open-top and closed-top
containers. Examples can be seen here: https://bit.ly/39iyshP.

Each scene is rendered using a camera with drifting position and orientation. We generate the
dataset using the Mujoco engine (Todorov et al. (2012)), where each scene is 15 frames long at
64x64 RGB resolution. For each frame, we produce a per-object mask for up to 10 objects, with a
consistent ordering of object masks throughout the scene. We generate an additional 5,000 scenes
for validation during hyperparameter optimization and another 5,000 scenes for a final test set.

1Despite inherent stochasticity in the dataset (e.g. new objects appearing from off screen), we found this
model worked well enough. We leave it for future work to incorporate stochasticity into our model.
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Figure 1: Comparison of model performance on VOE tests for five different physical concepts mea-
sured via classification accuracy. Models compared: OHMI uses interactions between object histo-
ries and memories; NOH No Objects/With History; ONH Objects/No History.

3.2 VIOLATION OF EXPECTATION (VOE)

To assess the model’s knowledge of specific physical concepts, we leverage the VOE paradigm from
the developmental literature and adapted for artificial models by (Piloto et al. (2018); Riochet et al.
(2018)). As such, we generate 5,000 probe scenarios for each of the following physical concepts
adapted from developmental psychology: object persistence, continuity, ’unchangeableness’, direc-
tional inertia, and solidity (which are all2 described in Piloto et al. (2018)). Each scenario, consists
of two physically plausible probe videos depicting the physical concept. Two corresponding implau-
sible videos are generated by swapping the first and second halves of the plausible videos 3. We only
splice frames such that all adjacent frames are physically plausible, but the scene as a whole is not.
We assess our model’s performance by computing the classification accuracy over all 5,000 probe
scenarios. A scenario is “classified” correctly when the model is more surprised by the implausible
videos than the plausible videos. Examples are available here: https://bit.ly/2vu3g0B.

4 RESULTS

For evaluation, we look at classification accuracy for five different physical concepts using the VOE
paradigm. Where the VOE paradigm requires a measure of surprise, we evaluated 3 candidate losses:
Lcodes, Lobjectpixels, and Lfg object pixels. We compared our model to two ablated models. The first
model, (No Objects/With History), was intended to assess the importance of objects. By setting the
number of “objects” in our model to 1, we remove all object-centered computation. To make a fair
comparison, this model has more parameters, but the same number of activations, as OHMI. The
second model, (Objects/No History), is object-based, but is aimed to assess the importance of object
histories. Whereas the standard object-based model is fed in all previously observed frames at each
timestep, this model is still recurrent, but only sees the current timestep in its input. We report our
results in Figure 1

To our knowledge, this is the first time a model has learned physics from segmented images and
passed VOE examination for a diverse set of physical concepts. We found that only OHMI was
capable of demonstrating strong classification accuracy on all 5 datasets. Where the other models
perform above chance, OHMI tends to be at least as good, if not better.

To assess whether the NOH model was bogged down by predicting the background, we also evalu-
ated our models with Lfg pixel objects. This loss is still in pixel space, but excludes the background.
Even in this regime, the NOH model struggles. Although we see the strongest results for OHMI
using the Lfg pixel objects loss which requires additional privileged information, we still get very
strong results with Lpixel objects which does not require information about the background. To our
surprise, both the object-based models were at chance performance using Lcodes as a measure of sur-
prise, which is a loss that should correspond to comparing high-level object properties. Conversely,
the non-object model (NOH) model, which had a single “object code” to represent the entire scene
showed its best accuracy using this loss. We look forward to exploring this behavior in future work.

2Except for directional inertia which was added to specifically probe knowledge of collisions.
3This approach was pioneered by Riochet et al. (2018).
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5 DISCUSSION

5.1 WHERE DO OUR OBJECTS COME FROM?

The ideal physical reasoning system would operate directly from perceptual inputs without any
privileged or ground truth information. Currently, our model requires two pieces of privileged infor-
mation: object masks and the correspondence from objects at one timestep to the next. Recent mod-
els give us the reasonable expectation that we can learn these two components directly from data.
MONet (Burgess et al. (2019)) has been developed to perform unsupervised object segmentation.
The AlignNet (Creswell et al. (2020)) is more recent work focused on solving the correspondence
problem which, with some work, can be used to align the extracted objects from one time step to the
next. Preliminary results (see Appendix) indicate that MONet is capable of extracting objects from
our dataset. We leave it for future work to incorporate these components into our model.

5.2 RELATED WORK

Recent work has sought to benchmark and solve the challenge of physical reasoning by bringing the
VOE paradigm to artificial intelligence. Piloto et al. (2018) examined VOE results for a wide set of
physical phenomena with a non object-based VRNN. The model’s generalization capabilities were
modest: the model trained on different instances of the plausible VOE probes. The present work
shows much stronger generalization by using training data with A) unstructured scenes quite remote
from the test dataset B) a moving camera thus increasing visual diversity. Riochet et al. (2018) built
a VOE dataset with parametric complexity and rich textures. They explored CNN and GAN-based
models for just a single physical concept: object permanence. Riochet et al. (2020) is similar to the
current work in many ways, but there are also notable differences. This model requires ground truth
masks, but unlike our model also requires depth information and ground truth object properties (e.g.
color, shape). Like OHMI, they predict per-object properties. However, where we use a VAE to learn
the representational format of object properties (our object codes), they explicitly specify an object’s
state as its position and depth. Where we assume object correspondence is given as input (and hence
something to work on in the future), they resolve the object correspondence problem by choosing
the nearest object4. In the regime where they train with object masks, a depth mask, ground truth
object properties and hard-code the representational format for objects, they report above-chance
VOE results on a dataset analagous to our “continuity” dataset.

Finally, Smith et al. (2019) develop a VOE dataset without collisions and model human behavior
on the VOE paradigm. However, they do not seek to learn physical reasoning. Similar to Riochet
et al. (2020), they hard-code the representational format for their objects. They leverage this format
to plug object properties into a physics engine instead of learning object dynamics. Binz & Endres
(2019) model the developmental stages of physical reasoning via Bayesian Neural Networks in the
domains of occlusion and numerosity, but do so in a simplified 2D environment.

5.3 CONCLUSION

In this work, we built OHMI, an object-centered model for learning physical reasoning from seg-
mented images. We found it has unprecedented success on learning physical concepts as measured
by the VOE paradigm. Our assessment revealed practical considerations for physical reasoning sys-
tems. First, we saw a clear benefit to object-centered representation and computation supporting the
developmental claim that objects underpin physical reasoning in infants. Furthermore, our model
demonstrates it is possible to learn a representational format for objects that enables predicting
physical interactions (a critical, but under-explored, ingredient for the “object files” account of in-
fant physical reasoning Xu (2013)). From an engineering perspective, our results show that although
recurrent models are fully capable of remembering object histories, our architecture performed sig-
nificantly better when allowed to operate over a full history5. We pave the way for future work to
incorporate unsupervised segmentation and alignment into our pipeline to learn physical reasoning
directly from pixels.

4It is unclear how this would work when the representational format is not hard-coded.
5This mirrors the recent trend of adopting Transformer models which eschew recurrent processing of se-

quences in favor of operating over a window of history. Here we do recurrent processing of the full window of
history.
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A APPENDIX

A.1 ARCHITECTURE DETAILS

The ComponentVAE had 10 components/objects. The ComponentVAE’s encoder used a se-
ries of 4 2D convolutions with the following parameters: output channels: (32,
32, 64, 64), kernel shapes: 2, strides: 2, paddings: ’SAME’,
activation: ReLU, activate final: True. This was followed by an multi-layer
perceptron (MLP) with 256 units and ReLU activations. This was projected to form a latent code
with 16 dimensions. The ComponentVAE’s decoder was a Broadcast Decoder (Watters et al.
(2019)) to encourage disentangling. The decoder used 4 1x1 convolutional blocks with the ReLU
activation. The ComponentVAE module is depicted below in Figure 2 (although we only show it
for 3 components/objects.)

Figure 2: Depiction of ComponentVAE. Reconstructions indicated by placing a ˜ accent underneath.

The dynamics predictor takes as input its state from the previous time step and the set of object
histories. Figure 3 shows how we use ComponentVAE to produce the object histories. The predictor
consists of two modules: a pair of Interaction Networks (depicted in Figure 4 and a Component
LSTM (depicted in Figure 5).

The Interaction Networks used consisted of 2 MLP layers with 512 units and the ELU activation
function. Interactions were aggregated using a sum max function which concatenated the sum of
the interactions to the max of the interactions.

The ComponentLSTM had 10 components/objects. The LSTM cell and hidden states had 2056
units.

A.2 TRAINING

Pretraining of the ComponentVAE used the RMSProp optimizer, with a learning rate of 1e-4 for
1,000,000 steps. Training the dynamics predictor used the ADAM optimizer with a learning rate of
1e-4 for 1,000,000 steps.
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Figure 3: Here we explicitly depict how we use the ComponentVAE to encode the observations
at each timestep to produce the object history. The figure specifically shows the object history for
t = 3

Figure 4: Here we explicitly depict the interactions that give rise to the name of our model, Object
History and Memory Interactions. We compute the interactions from the object memory to both
the object memory and the object history via two separate interaction networks. We then aggregate
the outputs to yield the interactions for each object in memory. Importantly, the object memory
and object history are different entities. As shown above, the history is the encoding of all the
observed inputs - as such it is veridical. The object memory is taken to be the cell states of the
ComponentLSTM and is not necessarily veridical.

A.3 LEARNED REPRESENTATIONAL FORMAT FOR OBJECT CODES

In Figure 6 an example of the representational format learned by a ComponentVAE when trained on
an earlier version of our dataset. We haven’t produced such plots for the most recent version of the
dataset, but have no reason to expect it is qualitatively different than the results presented here.
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Figure 5: Depiction of generic ComponentLSTM. At each timestep, it receives a set of n inputs
and previous LSTM states and runs them in parallel through a set of LSTMs with shared weights
ω to produce a set of n outputs and corresponding LSTM states for the next time step. In our
dynamics predictor, the cell state is called the object memories. The input consists of the object
histories concatenated to the corresponding interactions (computed in Figure 4). The outputs are the
predictions for the object codes at the next timetep.

A.4 UNSUPERVISED OBJECT SEGMENTATION WITH MONET

In Figure 7 we show the result of applying MONet to our dataset to produce unsupervised object
segmentations. The model deals fairly well with cluttered objects. A point for improvement is that
the model tends to group shadows as a unique object, although it is unlikely this over-segmentation
would prevent us from using MONet in our pipeline.

Figure 6: Latent traversals for two separate objects. We run an object, seen in the center column
of each image, through the ComponentVAE’s encoder to produce the object code: zi. The jth row
shows the result of perturbing the jth dimension of zi and running the perturbed code through the
ComponentVAE’s decoder. In this way, we can visualize the properties encoded by each dimension
of the object code. The first two dimensions seem to code for a rough analog of shape, the next two
for position, and the last three for color.
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Figure 7: Here we show the result of applying MONet to our dataset to yield unsupervised object
segmentations. Each unique color in the righthand images correspond to a segmented object.
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