TOWARD A NEURO-INSPIRED CREATIVE DECODER

Payel Das, Brian Quanz, Pin-Yu Chen, Jae-wook Ahn, Dhruv Shah
IBM Research - {daspa,blquanz}@us.ibm.com

ABSTRACT

Creativity, a process that generates novel and meaningful ideas, involves increased association between task-positive (control) and task-negative (default) networks in the human brain. Inspired by this seminal finding, we propose a creative decoder within a deep generative framework, which involves direct modulation of the neuronal activation pattern after sampling from the learned latent space. The proposed approach is fully unsupervised and usable off-the-shelf. Novelty metrics and human evaluation were used to evaluate the creative capacity. Our experiments on different image datasets (MNIST, FMNIST, MNIST+FMNIST, WikiArt and CelebA) reveal that atypical co-activation of highly and weakly activated neurons in a deep decoder promotes generation of novel and meaningful artifacts.

1 INTRODUCTION

Creativity is defined as a process that produces novel and valuable (aka meaningful) ideas [Boden (2004)]. In early days of computational creativity research, expert feedback [Graf & Banzhaf (1995)] or evolutionary algorithms with hand-crafted fitness functions [DiPaola & Gabora (2009)] were used to guide a model’s search process to make it creative. However, those methods reportedly lack exploration capability.

Data-driven approaches like deep learning open a new direction – enabling the study of creativity from a knowledge acquisition perspective. Deep Dream [Szegedy et al. (2015)] and Deep Style Transfer [Gatys et al. (2015)] have aroused substantial interest in computational creativity research. Only recently, novelty generation using powerful deep generative models, such as Variational Autoencoders (VAEs) [Kingma & Welling (2013), Rezende & Mohamed (2015)] and Generative Adversarial Networks (GANs) [Goodfellow et al. (2014)], have been attempted. These are designed to build a model from and generate known objects (i.e., images), and discourage out-of-distribution generation to avoid instability and minimize spurious sample generation [Kégl et al. (2018)], limiting their potential in creativity research. Therefore, new approaches to enhance the creative capacity of generative models are needed.

One path is to get inspiration from the cognitive processes associated with human creativity. How does the human brain produce creative ideas? It is an interesting question and a central topic in cognitive neuroscience research. Recent neuroimaging studies [Beaty et al. (2018), Shi et al. (2018), Gao et al. (2017)] suggest stronger coupling of the default mode network and executive control network in creative brains across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation (see Fig. 1A-B). Brain networks are the large-scale communities of interacting brain regions, as revealed by the resting-state functional correlation pattern; these networks correspond to distinct functional systems of the brain. The default mode or task-negative network is associated with spontaneous and self-generated thought, and, therefore implicated in idea generation. The control or task-positive network, in contrast, is associated with cognitive processes requiring externally directed attention.

Default and control networks often exhibit an antagonistic relation during rest and many cognitive tasks, including working memory [Anticevic et al. (2012)]. This antagonistic relation likely reflects suppression of task-unrelated thoughts during cognitive control. Dynamic coupling of default and control networks has been previously reported during goal-directed, self-generated thought processes [Spreng et al. (2015)]. Recently [Beaty et al. (2016)] proposed that stronger coordination between default and control networks contributes to creative idea generation.

*Payel Das and Brian Quanz contributed equally to this work and are corresponding authors.
Motivated by neuroimaging findings suggesting stronger coupling between task-positive and task-negative neurons in creative brains, this work attempts to induce creativity in deep generative models by proposing a creative decoder. In a nutshell, the creative decoder aims to generate creative samples from the original latent (concept) space by favoring atypical co-activation of high- and low-active neurons (neuron groups derived by roughly modeling the task-negative and task-positive concepts), while the generative model training remains unchanged. To our knowledge, this is the first work that aims to enhance creative capacity of a deep generative model in a neuro-inspired manner, and further can be adapted to any decoder/generator and applied without additional training or data.

We employ human annotation, in addition to using surrogate metrics such as reconstruction distance, for creativity evaluation of the samples generated by the creative decoder and compare to a number of baseline approaches. A VAE model was used as the base generative framework (see Fig 1C). Results show that enhanced creativity can result from the neuro-inspired atypical activation as opposed to a simple random or structured noise effect. We show the performance of the proposed method against MNIST digits, FMNIST fashion objects, and on a combined MNIST plus FMNIST dataset. We also present results on the WikiArt art images and CelebA faces.

2 RELATED WORK

There are several related works on novelty generation with deep generative models. One line of work is on systems designed to produce creative outcomes, but these require supervision either in the form of pre-set features to compose (Nguyen et al. (2015)), creative inputs and labels (Elgammal et al. (2017)), or human feedback to make the network creative-explorative (Cherti & Kégl (2016)), whereas our method is wholly unsupervised, exploiting a reported neural basis of creativity, and does not require alternate training or inference. Another line of related work is few/one-shot learning and generation (Lake et al. (2015); Rezende et al. (2016); Clouâtre & Demers (2019)), a step toward out-of-class generation. However, these require novel exemplars at test time, unlike our method.

3 METHODOLOGY

Creative decoding scheme. To capture the spirit of the atypical neuronal activation pattern observed in a creative human brain, i.e., dynamic interaction between a task-positive (control) and a task-negative (default) brain network, we propose a probabilistic decoding scheme. After sampling a latent representation z (e.g., in a GAN or VAE), the proposed method selects decoder neurons based on their activation correlation pattern, and then activates a few “off” neurons along with the “on” neurons.
Specifically, we randomly select from “off” neurons that were weakly-activated in the trained decoder across most of the training data - referred to as the “low-active” method. “Off” low-active neurons most-correlated with the first one selected are selected until a specified number to turn on is reached. It should be noted that the “off” neurons in the decoder are actually not task-positive, and not “default task-negative” neurons as in the brain. I.e., decoder neurons are not used for self-generated thought.

In the following, we provide results and evaluation for the low-active method. We compared those results with the samples generated from (1) the unmodified decoder as well as by (2) Noisy-decoding: during decoding a random Gaussian noise was infused in a fraction of neurons, and (3) Random flipping: activation of randomly selected “off” neurons (same as our proposed method but does not apply special criteria to select “off” neurons). Linear interpolation in the latent space between training samples that belong to different classes, followed by standard decoding did not yield creative samples (result not shown).

Evaluation of Creativity The ultimate test of creativity is through human inspection, and human labeling has been used to evaluate deep generative models [Dosovitskiy et al. (2016); Lopez & Tucker (2018)] or as a part of the generative pipeline [Lake et al. (2015); Salimans et al. (2016)]. We used an in-house annotation tool to evaluate creativity of the generated samples, with four options to choose from per image - ‘not novel or creative’, ‘novel but not creative’, ‘creative’, and ‘inconclusive’. Annotators did not have access to the knowledge of the decoding scheme at the time of annotation, but were primed on the training dataset.

We also used a number of surrogate novelty metrics. One key one we focus on for this paper is reconstruction distance based on encoder-decoder architectures [Wang et al. (2018)]. For image x and corresponding latent (encoded) vector z, novelty can be estimated from the distance between x and the closest sample the VAE can produce from z. Therefore, $D_r = \min_{z} ||x - E_{\theta}(x|z)||_2$. Since a trained VAE has a narrow bottleneck, the reconstruction distance of any novel image will be large.

4 EXPERIMENT DETAILS AND RESULTS

We used a VAE as the generative model. For F/MNIST datasets the encoder network consisted of 3 fully-connected layers (1000, 500, 250) before the z output (50 for F/MNIST and 100 for the combination), with the decoder architecture mirroring it. RELU activations and training dropout of 0.10 were used. We performed modifications at the decoder’s 3rd hidden layer, however, modifying lower layers also produced a variety of creative results (not shown). Results were obtained by perturbing five neurons during decoding. For the low-active method, we used neurons whose activations were within the 1st and 15th percentiles of the neuron percent activations for the layer.

Reconstruction distance is averaged over 10K generated samples. For human evaluation of creativity, 9 annotators annotated a pool of ≈ 500 samples per dataset (we used agreement amongst 3 or more annotators as consensus), generated from either using neuro-inspired creative decoding (low-active), baseline decoding (noisy decoding and random activation) or regular decoding.

Human annotation results. Figures 1D and 2A-C present the analysis of human annotations of the generated samples. Visually, creative samples generated from the latent space of MNIST digits do not appear digit-like, rather look more like symbols. In contrast, those generated from FMNIST still resemble fashion objects; however, novel objects, e.g., a shirt with one sleeve, sock, bag with asymmetric handle, or front-slit kurta were found. Comparison with “novel but not creative” images
Figure 3: Results on WikiArt (with ArtGAN) and CelebA (using VAE) (top: regular, bottom: modified using low-active decoding)

confirms the known association of both novelty and value with human perception of creativity. Interestingly, VAE trained on the combined dataset outputs creative images distinct from the MNIST- and FMNIST-only cases. As the perception of “creativity” is mostly aesthetical, results on more broad and complex “artsy” datasets is shown in Figure 3; however, we refrain from evaluating them.

Table 1: Human annotation results: L1 (Creative), L2 (Novel but not creative), L3 (Not novel or creative), L4 (Inconclusive). Values are normalized fraction of annotated instances (with a consensus of 3 or more users) within each decoding scheme. We also report average reconstruction distance, D_r, of all generated samples by each method. Highest L1 (creative) fraction and D_r are marked in bold.

<table>
<thead>
<tr>
<th></th>
<th>MNIST</th>
<th>FMNIST</th>
<th>MNIST+FMNIST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1</td>
<td>L2</td>
<td>L3</td>
</tr>
<tr>
<td>Low-active</td>
<td>0.39</td>
<td>0.50</td>
<td>0.11</td>
</tr>
<tr>
<td>Noisy</td>
<td>0.17</td>
<td>0.07</td>
<td>0.76</td>
</tr>
<tr>
<td>Random</td>
<td>0.24</td>
<td>0.46</td>
<td>0.30</td>
</tr>
<tr>
<td>Regular</td>
<td>0.10</td>
<td>0.03</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Comparison with baseline methods. Normalized fraction of creative samples with low subject variability (Table 1) suggests that the low-active method constantly outperforms baseline methods (random flipping of “off” neurons, noisy decoding) and regular decoding in single dataset scenarios; the relative gain clearly depends on the dataset. Noisy decoding performs similar to regular decoding (i.e., generates samples similar to training data), while random activation of “off” neurons has a higher tendency to produce novel (but not creative) samples. Therefore, the special effect of “creative” decoding cannot be replicated by simply flipping random “off” neurons (Table 1) - the neuro-inspired selection and flipping of low-active neurons is what promotes creativity in generations. Training on combined dataset enables creative generation by using baseline and regular methods as well, likely due to the extended capacity of the VAE itself (interpolating between unrelated object types). An interesting observation emerges from the average reconstruction distance (D_r): the low-active method consistently yields samples with higher D_r on average for all datasets, demonstrating it’s enhanced ability of generating out-of-distribution samples.

5 DISCUSSION AND FUTURE WORK

Prior work has shown that high decoder capacity enables easier posterior inference; at the same time the model becomes prone to over-fitting [Kingma et al. (2016)]. The presence of inactive latent units in a trained VAE decoder originates from regularization. Those low-active neurons are sparsely activated, not important for reconstruction / classification, and often encode unique sample-specific features - so are likely not part of the winning ticket [Frankle & Carbin (2018)]; effects of pruning them will be investigated in future. While our intent is not to downplay the complexity of the human brain and the creative cognition process, the fact that exploiting the extra unused capacity of a trained decoder in a brain-inspired manner provides access to novel and creative images is interesting. Future work will include testing creativity of trainable decoders with purposely added extra capacity and exposing the model to a more complicated multi-task setting. Additionally, memory retrieval in a deep neural net by disentangling “low-active” neurons and then activating them at test time will be investigated. Surrogate metric design for better capturing human perception of creativity will also be investigated in the future toward empowering machine learning models with “creative autonomy” [Jennings (2010)].
REFERENCES

