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ABSTRACT

Creativity, a process that generates novel and meaningful ideas, involves increased
association between task-positive (control) and task-negative (default) networks in
the human brain. Inspired by this seminal finding, we propose a creative decoder
within a deep generative framework, which involves direct modulation of the
neuronal activation pattern after sampling from the learned latent space. The
proposed approach is fully unsupervised and usable off-the-shelf. Novelty metrics
and human evaluation were used to evaluate the creative capacity. Our experiments
on different image datasets (MNIST, FMNIST, MNIST+FMNIST, WikiArt and
CelebA) reveal that atypical co-activation of highly and weakly activated neurons
in a deep decoder promotes generation of novel and meaningful artifacts.

1 INTRODUCTION

Creativity is defined as a process that produces novel and valuable (aka meaningful) ideas Boden
(2004). In early days of computational creativity research, expert feedback Graf & Banzhaf (1995)
or evolutionary algorithms with hand-crafted fitness functions DiPaola & Gabora (2009) were used
to guide a model’s search process to make it creative. However, those methods reportedly lack
exploration capability.

Data-driven approaches like deep learning open a new direction – enabling the study of creativity from
a knowledge acquisition perspective. Deep Dream Szegedy et al. (2015) and Deep Style Transfer
Gatys et al. (2015) have aroused substantial interest in computational creativity research. Only
recently, novelty generation using powerful deep generative models, such as Variational Autoencoders
(VAEs)Kingma & Welling (2013); Rezende & Mohamed (2015) and Generative Adversarial Networks
(GANs) Goodfellow et al. (2014), have been attempted. These are designed to build a model from
and generate known objects (i.e., images), and discourage out-of-distribution generation to avoid
instability and minimize spurious sample generation Kégl et al. (2018), limiting their potential in
creativity research. Therefore, new approaches to enhance the creative capacity of generative models
are needed.

One path is to get inspiration from the cognitive processes associated with human creativity. How
does the human brain produce creative ideas? It is an interesting question and a central topic in
cognitive neuroscience research. Recent neuroimaging studies Beaty et al. (2018); Shi et al. (2018);
Gao et al. (2017) suggest stronger coupling of the default mode network and executive control
network in creative brains across a range of creative tasks and domains, from divergent thinking to
poetry composition to musical improvisation (see Fig. 1A-B). Brain networks are the large-scale
communities of interacting brain regions, as revealed by the resting-state functional correlation
pattern; these networks correspond to distinct functional systems of the brain. The default mode
or task-negative network is associated with spontaneous and self-generated thought, and, therefore
implicated in idea generation. The control or task-positive network, in contrast, is associated with
cognitive processes requiring externally directed attention.

Default and control networks often exhibit an antagonistic relation during rest and many cognitive
tasks, including working memory Anticevic et al. (2012). This antagonistic relation likely reflects
suppression of task-unrelated thoughts during cognitive control. Dynamic coupling of default and
control networks has been previously reported during goal-directed, self-generated thought processes
Spreng et al. (2015). Recently Beaty et al. (2016) proposed that stronger coordination between default
and control networks contributes to creative idea generation.
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Figure 1: A-B. Depictions (A: circle plots, B: glass brains) of high- and low-creative networks in human brain
with their highest degree nodes. Circle plot colors correspond to brain lobes in left(L) and right (R) hemispheres.
Adapted from Beaty et al. (2018). C. Depiction of a VAE model with neuro-inspired creative decoder. Normally,
a small % of neurons in each hidden layer is low-active (dark color). Inspired by neural basis of creativity, we
activate those “low-active” neurons to induce coupling with task-positive neurons during “creative” decoding. D.
Samples generated by creative decoding and human-annotated as creative with high confidence.

Motivated by neuroimaging findings suggesting stronger coupling between task-positive and task-
negative neurons in creative brains, this work attempts to induce creativity in deep generative models
by proposing a creative decoder. In a nutshell, the creative decoder aims to generate creative samples
from the original latent (concept) space by favoring atypical co-activation of high- and low-active
neurons (neuron groups derived by roughly modeling the task-negative and task-positive concepts),
while the generative model training remains unchanged. To our knowledge, this is the first work that
aims to enhance creative capacity of a deep generative model in a neuro-inspired manner, and further
can be adapted to any decoder/generator and applied without additional training or data.

We employ human annotation, in addition to using surrogate metrics such as reconstruction distance,
for creativity evaluation of the samples generated by the creative decoder and compare to a number of
baseline approaches. A VAE model was used as the base generative framework (see Fig 1C). Results
show that enhanced creativity can result from the neuro-inspired atypical activation as opposed to a
simple random or structured noise effect. We show the performance of the proposed method against
MNIST digits , FMINST fashion objects , and on a combined MNIST plus FMINST dataset. We also
present results on the WikiArt art images and CelebA faces.

2 RELATED WORK

There are several related works on novelty generation with deep generative models. One line of
work is on systems designed to produce creative outcomes, but these require supervision either in the
form of pre-set features to compose (Nguyen et al. (2015)), creative inputs and labels (Elgammal
et al. (2017)), or human feedback to make the network creative-explorative (Cherti & Kégl (2016)),
whereas our method is wholly unsupervised, exploiting a reported neural basis of creativity, and does
not require alternate training or inference. Another line of related work is is few/one-shot learning
and generation (Lake et al. (2015); Rezende et al. (2016); Clouâtre & Demers (2019)), a step toward
out-of-class generation. However, these require novel exemplars at test time, unlike our method.

3 METHODOLOGY

Creative decoding scheme. To capture the spirit of the atypical neuronal activation pattern observed
in a creative human brain, i.e., dynamic interaction between a task-positive (control) and a task-
negative (default) brain network, we propose a probabilistic decoding scheme. After sampling a latent
representation z (e.g., in a GAN or VAE), the proposed method selects decoder neurons based on
their activation correlation pattern, and then activates a few “off" neurons along with the “on” neurons.
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Figure 2: Samples human-annotated as (A) creative, (B) novel but not-creative, and (C) not novel or creative. D:
How “creative” decoding modifies generation (combined dataset): left: regular; right: low-active decoding.

Specifically, we randomly select from “off” neurons that were weakly-activated in the trained decoder
across most of the training data - referred to as the “low-active” method. “Off” low-active neurons
most-correlated with the first one selected are selected until a specified number to turn on is reached.
It should be noted that the “off” neurons in the decoder are actually not task-positive, and not “default
task-negative" neurons as in the brain. I.e., decoder neurons are not used for self- generated thought.

In the following, we provide results and evaluation for the low-active method. We compared those
results with the samples generated from (1) the unmodified decoder as well as by (2) Noisy-decoding:
during decoding a random Gaussian noise was infused in a fraction of neurons, and (3) Random
flipping: activation of randomly selected “off” neurons (same as our proposed method but does not
apply special criteria to select “off” neurons). Linear interpolation in the latent space between training
samples that belong to different classes, followed by standard decoding did not yield creative samples
(result not shown).

Evaluation of Creativity The ultimate test of creativity is through human inspection, and human
labeling has been used to evaluate deep generative models Dosovitskiy et al. (2016); Lopez & Tucker
(2018) or as a part of the generative pipeline Lake et al. (2015); Salimans et al. (2016). We used an
in-house annotation tool to evaluate creativity of the generated samples, with four options to choose
from per image - ‘not novel or creative’, ‘novel but not creative’, ‘creative’, and ‘inconclusive’.
Annotators did not have access to the knowledge of the decoding scheme at the time of annotation,
but were primed on the training dataset.

We also used a number of surrogate novelty metrics. One key one we focus on for this paper is
reconstruction distance based on encoder-decoder architectures Wang et al. (2018). For image x and
corresponding latent (encoded) vector z, novelty can be estimated from the distance between x and
the closest sample the VAE can produce from z. Therefore, Dr = min

z
||x− E[θ(x|z)]||2. Since a

trained VAE has a narrow bottleneck, the reconstruction distance of any novel image will be large.

4 EXPERIMENT DETAILS AND RESULTS

We used a VAE as the generative model. For F/MNIST datasets the encoder network consisted of
3 fully-connected layers (1000, 500, 250) before the z output (50 for F/MNIST and 100 for the
combination), with the decoder architecture mirroring it. RELU activations and training dropout of
0.10 were used. We performed modifications at the decoder’s 3rd hidden layer, however, modifying
lower layers also produced a variety of creative results (not shown). Results were obtained by
perturbing five neurons during decoding. For the low-active method, we used neurons whose
activations were within the 1st and 15th percentiles of the neuron percent activations for the layer.

Reconstruction distance is averaged over 10K generated samples. For human evaluation of creativity,
9 annotators annotated a pool of ≈ 500 samples per dataset (we used agreement amongst 3 or more
annotators as consensus), generated from either using neuro-inspired creative decoding (low-active),
baseline decoding (noisy decoding and random activation) or regular decoding.

Human annotation results. Figures 1D and 2A-C present the analysis of human annotations of the
generated samples. Visually, creative samples generated from the latent space of MNIST digits do
not appear digit-like, rather look more like symbols. In contrast, those generated from FMNIST
still resemble fashion objects; however, novel objects, e.g., a shirt with one sleeve, sock, bag with
asymmetric handle, or front-slit kurta were found. Comparison with “novel but not creative” images
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Figure 3: Results on WikiArt (with ArtGAN) and CelebA (using VAE) (top: regular, bottom: modified using
low-active decoding)

confirms the known association of both novelty and value with human perception of creativity.
Interestingly, VAE trained on the combined dataset outputs creative images distinct from the MNIST-
and FMNIST-only cases. As the perception of “creativity” is mostly aesthetical, results on more
broad and complex “artsy" datasets is shown in Figure 3; however, we refrain from evaluating them.

Table 1: Human annotation results: L1 (Creative), L2 (Novel but not creative), L3 (Not novel or creative), L4
(Inconclusive). Values are normalized fraction of annotated instances (with a consensus of 3 or more users)
within each decoding scheme. We also report average reconstruction distance, Dr , of all generated samples by
each method. Highest L1 (creative) fraction and Dr are marked in bold.

MNIST FMNIST MNIST+FMNIST
L1 L2 L3 L4 (Dr) L1 L2 L3 L4 (Dr) L1 L2 L3 L4 (Dr)

Low-active 0.39 0.50 0.11 0.00 4.87 0.27 0.52 0.14 0.07 5.49 0.26 0.54 0.17 0.04 4.91
Noisy 0.17 0.07 0.76 0.00 1.78 0.19 0.09 0.71 0.01 1.91 0.25 0.22 0.51 0.01 1.97
Random 0.24 0.46 0.30 0.00 4.21 0.17 0.62 0.16 0.06 4.93 0.19 0.61 0.15 0.05 4.68
Regular 0.10 0.03 0.85 0.01 1.45 0.13 0.08 0.76 0.03 1.22 0.23 0.17 0.55 0.05 1.59

Comparison with baseline methods. Normalized fraction of creative samples with low subject
variability (Table 1, L1) suggests that the low-active method constantly outperforms baseline methods
(random flipping of “off” neurons, noisy decoding) and regular decoding in single dataset scenarios;
the relative gain clearly depends on the dataset. Noisy decoding performs similar to regular decoding
(i.e., generates samples similar to training data), while random activation of “off” neurons has a
higher tendency to produce novel (but not creative) samples. Therefore, the special effect of “creative”
decoding cannot be replicated by simply flipping random “off” neurons (Table 1) - the neuro-inspired
selection and flipping of low-active neurons is what promotes creativity in generations. Training
on combined dataset enables creative generation by using baseline and regular methods as well,
likely due to the extended capacity of the VAE itself (interpolating between unrelated object types).
An interesting observation emerges from the average reconstruction distance (Dr): the low-active
method consistently yields samples with higher Dr on average for all datasets, demonstrating it’s
enhanced ability of generating out-of-distribution samples.

5 DISCUSSION AND FUTURE WORK

Prior work has shown that high decoder capacity enables easier posterior inference; at the same
time the model becomes prone to over-fitting Kingma et al. (2016). The presence of inactive latent
units in a trained VAE decoder originates from regularization. Those low-active neurons are sparsely
activated, not important for reconstruction / classification, and often encode unique sample-specific
features - so are likely not part of the winning ticket Frankle & Carbin (2018); effects of pruning
them will be investigated in future. While our intent is not to downplay the complexity of the human
brain and the creative cognition process, the fact that exploiting the extra unused capacity of a trained
decoder in a brain-inspired manner provides access to novel and creative images is interesting. Future
work will include testing creativity of trainable decoders with purposely added extra capacity and
exposing the model to a more complicated multi-task setting. Additionally, memory retrieval in a
deep neural net by disentangling “low-active” neurons and then activating them at test time will be
investigated. Surrogate metric design for better capturing human perception of creativity will also
be investigated in the future toward empowering machine learning models with “creative autonomy”
Jennings (2010).
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