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ABSTRACT

Effective use of limited computational resources is a hallmark of intelligent sys-
tems. Here we explore how people make use of limited perceptual resources in
a naturalistic visual search task. We hypothesize that people optimally trade off
performance against the cost of sampling information. To formalize this hypothe-
sis, we frame the problem of attention allocation in visual search as a meta-level
Markov decision process (meta-MDP) and show that a classic Bayesian model of
visual search can be interpreted as a heuristic policy for this meta-MDP. We test
the heuristic policy against gaze data from 21 human participants in a virtual real-
ity (VR) visual search study, finding that human gaze trajectories share qualitative
structure with trajectories simulated from the model.
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1 INTRODUCTION

One hallmark of human intelligence is our ability to solve complex problems with limited computa-
tional resources. Resource-rational analysis attempts to understand how this is possible by framing
cognitive processes as solutions to optimization problems, where the objective function explicitly
trades off external utility with internal computational cost (Griffiths et al., 2015; Lieder & Griffiths,
2019). This approach has generated models of a range of cognitive processes, explaining obser-
vations from research on judgment (Lieder et al., 2012; 2018), decision-making (Gul et al., 20 18;
Callaway & Griffiths, 2019), and planning (Callaway et al., 2018). However, one area in which
resource-rational analysis has not been widely applied is perception.

Perception research generally focuses on highly constrained settings in which people seem to opti-
mally solve the statistical inference problem posed by making sense of sensory input (Hillis et al.,
2004; Alais & Burr, 2019; Landy et al., 2012; Ernst & Banks, 2002). But the optimization problem
in real world perceptual-motor tasks is more complex, demanding selective processing of sensory
signals. Imagine for instance trying to find your keys in a messy bedroom. It is not possible to
take in the full scene and immediately identify the keys. Instead, you must sequentially sample the
scene with the high-resolution area of the eye (the fovea) and allocate higher-level visual processing
resources to specific features, such as the color of the keychain.

Here, we propose that human strategies for solving this problem—naturalistic visual search—can
be understood using the framework of resource-rational analysis: people decide where to look, and
what features to look for, in a way that minimizes the computational cost of visual search.

2 A RESOURCE-RATIONAL MODEL OF VISUAL SEARCH

The key intuition behind our model is that visual search can be posed as a sequential decision
problem. That is, visual search consists of a sequence of decisions about where to fixate next, where
each such decision takes into account the information gained from previous fixations. The field of
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rational metareasoning formalizes this intuition by framing the problem of computational resource
allocation as a metalevel Markov decision process (meta-MDP; Russell & Wefald, 1991; Hay et al.,
2012). Like a standard MDP, a meta-MDP consists of a set of states, a set of actions, a transition
function, and a reward function. But the states correspond to beliefs, and the actions correspond to
computations. The transition function defines how computations update beliefs. Finally, the reward
function both penalizes computation, and rewards good decisions made based on accurate beliefs.
Below, we specify a meta-MDP for visual search.

• Latent state: We assume that a visual scene is defined as a set of objects at specific lo-
cations, each object being represented by a feature vector in low-dimensional space. We
further assume (for simplicity) that the agent knows the location of each object, but not its
features. We can thus represent the latent (unknown) state as a matrix A such that the value
of feature f for object o is Aof .

• Beliefs: A belief is a distribution over A. For tractability, we assume independent Gaussian
beliefs. A belief can thus be represented with mean and precision matrices, F and J , such
that p(Aof ) = N (Fof , 1/Jof ).

• Computations: A computation corresponds to looking at the center of object o.
• Actions: An action is either ⊥, a special termination action, or performing a computation.
• Transition: Formally, a computation takes a measurement X of the features of objects

near the center of gaze, and incorporates that measurement into the belief using Bayesian
cue combination. To specify this transition:

1. Compute an object attentional mask go, in which the attention paid to all objects in
the scene exponentially decreases with their distance to o.

2. Compute the measurement precision Jmeas = go1
T such that the features of objects

near the center of gaze have the highest precision.
3. Sample a measurement X ∼ N (A, 1/Jmeas).
4. Perform the Bayesian update

F → F � J +X � Jmeas

J + Jmeas
(1)

and J → J + Jmeas, where � represents the element-wise product.
• Reward: The agent incurs a cost −c for each computation. When the agent terminates

computation, it calculates a posterior over which object o is the target given its beliefs,

po ∝ exp

1

2

∑
f

[
log (1 + Jof )F

2
of − Jof

(
Fof − f target

f

)2] (2)

This calculation assumes that the true values of object features are all mutually independent
and Gaussian with mean 0 and variance 1. The agent then selects argmax[po] as its target
report and receives a final reward of R = 1 if this is correct and R = 0 otherwise.

The classic ideal observer model of visual search proposed in Najemnik & Geisler (2005) can be
interpreted as a policy for this meta-MDP with a fixed myopic decision rule in which the agent
always selects argmaxpo as its fixation target, and chooses⊥whenever max[po] exceeds a threshold.
We can prove that this policy is optimal for simplified versions of the meta-MDP, however it is
unclear if that is also the case for the general version. To address this question, we trained artificial
agents with deep reinforcement learning to solve the meta-MDP in environments similar to those
experienced by the human observers (see Supplement for additional details). We found that even
with extensive training, these agents cannot outperform the ideal observer. Moreover, after training,
these agents increasingly take the same action as the ideal observer. These results suggest that we
can use the ideal observer policy as a computationally efficient stand-in for the true optimal policy.

3 EXPERIMENTAL PARADIGM

Many studies of visual search are designed to test the human ability to use specific features to find
objects (Wolfe, 2010). While these studies have identified some image features that drive eye move-
ments, such stimuli are are inconsistent with the multidimensional structure of real-world environ-
ments. To circumvent this limitation, we conducted a study of visual search in virtual reality (VR).
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Figure 1: Visual Search in Virtual Reality. A: Egocentric & 3rd person view of participant shown
in the inset. B: 360-degree equirectangular projection of scene in A.

26 participants viewed VR scenes generated with the Unity game engine through a head-mounted
display (HTC Vive VR), equipped with a Tobii Pro VR eye tracker (sampling frequency: 120Hz),
while holding a handheld controller (HTC Vive VR). Each participant performed 300 trials of visual
search for a target in a cluttered room with 55-112 distractors and under an 8 second deadline (Fig-
ure 1A, see Supplement for additional details). In some of the trials, visual recommendations, in
the form of transparent blue blobs, were presented. Data from those trials are not reported here. To
analyze gaze trajectories, we transformed the raw gaze sample coordinates to the pixel space of 360
degree equirectangular projections from the pre-specified viewpoints in each scene (Sitzmann et al.,
2018) (Figure 1B). This transformation is necessary in order to simultaneously take into account
participants’ head and eye movements.

Figure 2: Feature extraction. Top: a plastic box and a rubber duck, two example objects rendered
with Unity that were used in our study. Bottom left: mesh representation and corresponding D2
distributions. Bottom right: 2D texture and corresponding CIE L*a*b* color distributions.

4 FEATURE EXTRACTION

A challenge for any decision-theoretic model of goal-directed behavior is reducing the perceptual
input to a low-dimensional state representation that can provide task-relevant reward signals (Niv,
2019; Leong et al., 2017; Radulescu et al., 2019). In the context of naturalistic visual search, we
drew from work in visual cognition showing that eye-movements are guided by objects and object
shape, color and texture (Wolfe & Horowitz, 2017). We quantified shape as the D2 distribution over
the 3D mesh of each object (Osada et al., 2002) (Figure 2, left). We quantified color by converting
the 2D texture of each object to the CIE L*a*b* color space and extracting the A (green-red) and
B (blue-green) channels (Figure 2, right). We then applied Principal Components Analysis (PCA)
to the shape and color of all objects, computed low-dimensional projections in the space defined by
the principal components, and measured similarity between objects in this space (see Supplement
for additional details and a validation of the PCA procedure and similarity metric).

5 RESULTS

Participants successfully found the target on 76% of trials, with a median response time on cor-
rect trials of 2.89s (IQR: 1.99-4.44s). Preliminary simulations of human gaze data using the ideal-
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Figure 3: Modeling results. A, top: gaze trajectories obtained by simulating the ideal-observer
heuristic policy in one of the living room scenes. A, bottom: raw gaze trajectories of 8 participants
searching in the same scene. B, top: relative looking times to all objects averaged over 100 simula-
tions of the ideal-observer for the scene on the left. B, bottom: relative looking times to all objects
averaged over participants whose gaze trajectories are shown on the left. The green bar represents
the target and yellow, red and orange are three prominent distractors. C: Model comparison between
variants of the ideal-observer model that use either shape, color or both features when computing
the reward.

observer heuristic policy showed that the dynamics of search are consistent with a sequential sam-
pling policy that maximizes the probability of the next fixation landing on the target given current
beliefs (Figure 3A). Notably, both the model and humans display “inhibition of return”, in that they
tend to sample objects in the same parts of space, and then focus attention elsewhere (Najemnik &
Geisler, 2005). The model and the human also tend to get distracted by the same objects, and dis-
tractors that consistently capture attention across both model and human search episodes are similar
to the target (Figure 3B, Supplementary figure 2). This suggests that, as predicted by the model,
people incorporate similarity to target as an intrinsic reward signal into their policies for sequen-
tially sampling the environment during visual search. Finally, a model comparison revealed that an
ideal-observer model which only uses color to compute reward is most predictive of the distribution
of objects that people look at (Figure 3C, see Supplement for details of the model comparison pro-
cedure). In other words, for this task, color is more important for human search policies than shape.
We note however that the termination rule for the heuristic policy of the ideal observer is set by an
arbitrary criterion. An optimal criterion may be exposed in ongoing work aimed at identifying the
optimal policy.

6 DISCUSSION AND ONGOING WORK

We framed visual search as a sequential sampling problem, formalized as a meta-MDP with a low-
dimensional perceptual representation. We tested an “ideal observer” model, which always looks
at the object it believes to be the most likely target. We used deep reinforcement learning to show
that this model is close to the optimal policy of the meta-MDP, and provided evidence that its policy
matches some aspects of human eye movements. Another promising avenue for future work is to
investigate alternative schemes for automated extraction of low-dimensional feature representations
of objects, such as representations that emerge in deep convolutional neural network models of the
the ventral visual stream, or neural network models trained on object segmentation and discrimi-
nation (Yamins et al., 2014; Fan et al., 2019; Wu et al., 2018). Using PCA instantiates a simple
hypothesis for the kinds of representations that might underlie object discrimination based on par-
allel feature maps (Treisman & Gelade, 1980), but does not capture more complex invariances (e.g.
to lighting, rotation) that our visual system may have learned over the course of interacting with
the environment. Our results highlight the potential of framing goal-directed behaviors in natural-
istic environments as meta-reasoning problems. This approach may shed light on the longstanding
question of how humans dynamically adapt the structure of their environment into perceptual repre-
sentations that are useful across a wide range of tasks.
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A SUPPLEMENTARY MATERIAL

A.1 ADDITIONAL EXPERIMENTAL DETAILS

We recruited 26 participants via web advertisement. Participants provided informed consent con-
sistent with the Declaration of Helsinki. Experimental sessions lasted approximately 60 minutes,
for which we compensated participants $50. We excluded data from 5 participants for data quality
issues, yielding a dataset of 21 participants.
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A trial was defined by a combination of one of 6 possible rooms (kitchen, living room, bathroom,
study or one of two bedrooms), one of 5 pre-determined viewpoints, and one of 10 pre-generated tar-
get/distractor sets. Each participant experienced the set of 300 unique trials this procedure generated
but in different random order. For each participant, assistance was provided on 100 trials.

Each trial began by showing the target object for 4 seconds. The participant was then put into
the room from a perspective selected a priori. At any time during the 8-second search period, the
participant could report having found the target by pointing and clicking with a handheld controller
(Figure 1A). If the participant did not find the target with the 8-second period, the trial ended.

We determined the identity, size, location and orientation of the target object and distractor objects
with a number of constraints: (1) each object rested on a stable surface (e.g. floor, table, etc); (2)
none of the distractors had the same object identity as the target, or are too similar; (3) at least 50%
of the target was visible from the participant’s viewpoint; (4) the visible area of the target is at least
3 degrees of visual angle squared.

A.2 ADDITIONAL ANNOTATION AND FEATURE EXTRACTION DETAILS

We did not apply other processing or smoothing to gaze data, and we did not segment trajectories into
fixations and saccades, since saccade detection algorithms are developed for head-fixed participants
viewing 2D screens and may not readily extend to free viewing in 3D virtual reality environments.

In post-processing, we annotated each raw gaze sample with the label of the object at the center of
gaze. We extracted this object label by recording the object mesh collider hit by a ray in the Unity
environment in the direction of gaze. We found that about 50% of gaze samples landed either on
task-relevant objects (i.e., the target or a distractor), suggesting that objects are a strong cue for gaze,
consistent with previous literature (Einhäuser et al., 2008). In this paper, we restrict analysis to those
gaze samples which hit task-relevant objects.

The D2 shape distribution and CIE L*a*b* color representation both yield high-dimensional repre-
sentations of the shape and color of each object, constrained by the number of times pairs of points
are sampled from the mesh (in the case of D2) and the pixel size of the texture (in the case of
CIE L*a*b*). For computing the shape distribution, we randomly sampled 500,000 pairs of points
on the mesh surface. For converting color texture to CIE L*a*b*, we resampled each texture to
2048*2048px, and concatenated the A and B channels.

Due to its ease of computation and robustness in the presence of rotations, translations and other
shape perturbations, the D2 distribution has been widely used in the computer graphics and computer
vision literature as a metric for discriminating between shapes of different classes (Osada et al.,
2002). Importantly, data from human similarity judgments suggests the D2 distribution captures
some aspects of human shape perception (Clark et al., 2006).

The CIE L*a*b* color space describes all the colors visible to the human eye, and can thus serve
as a metric space for color similarity that roughly matches that of human color perception. Because
color was extracted from 2D texture files, this representation is likely to also include some textural
elements such as smoothness or graininess.

A.3 FEATURE EXTRACTION VALIDATION

To validate the choice of PCA as a dimensionality reduction step in our model, we generated separate
shape and color representational dissimilarity matrices (RDMs) for all the objects in used in the ex-
periment by computing the pairwise Euclidean distance between shape and color vectors (Kriegesko-
rte et al., 2008; Venkatesh et al., 2020). We used used either the full representation (RDM-full), or a
representation based on a restricted number of principal components (RDM1, RDM2, etc). We then
performed a permutation test to obtain a null distribution for the Pearson distance between the intact
and randomly permuted full RDM. This distribution provides an estimate of the upper bound on the
Pearson distance we might expect between different RDMs. Taking the distance of the full RDM to
itself as a lower bound, we computed and plotted the distance between RDM-full, RDM1, RDM2,
etc.

We found that object shape and color similarity is largely preserved for low-dimensional projections
in the space of principal components (Figure A1). For instance, two objects that are similar when
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Figure A.1: Feature extraction validation.

computing similarity in the space defined by the full shape/color representation are also similar
when computing similarity in the space defined by the first three principal components (Figure A1
top row). We found that the distance between full and partial RDMs sharply decreases with the
number of components used (Figure A1 middle row), And for both shape and color, RDMs1-20 were
well outside the null distribution obtained via permutation testing (Figure A1 bottom row). After
visual inspection of how objects are distributed in the space of principal components, we chose a 3D
projection for each feature. In other words, every object’s shape and color was represented as a 3D
vector of real numbers obtained by projecting the shape and color data in the space defined by the
first 3 principal components.

A.4 SIMILARITY METRIC VALIDATION
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Figure A.2: Similarity metric validation.

According to our model, the probability that an object is the target decreases with distance along
each feature, weighted by the precision of that feature. In other words, similarity to target serves as
an internal reward signal. In alignment with this assumption, we also found that similarity between
objects computed from the low-dimensional shape and color representations is predictive of human
gaze behavior. Participants were more likely to look at objects that are similar to the target rather

8



Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

than to a “prototypical” distractor (Figure A2-A). Moreover, the dissimilarity between the objects
people fixated at and the target decreased over time for both shape and color, but not for location.
This suggests that people preferentially look at objects close to the target in representational space,
although these objects are not physically close (Figure A2-B). These results validated similarity to
target in the low-dimensional feature space defined by color and shape as a useful signal that guides
participants’ search policies.

A.5 LEARNING METALEVEL POLICIES WITH DEEP REINFORCEMENT LEARNING

In order to identify near-optimal policies for the meta-MDP, we trained artificial agents to maximize
the expected cumulative rewards in an ensemble of visual search environments. For each of the 300
scenes presented in the human task, we generated one artificial environment in which the target was
the same as in the human experiment. We also created additional environments by considering the
same scene, but with a different object assigned to be the target. We only generated such scenes if
that object was unique among the object set, resulting in an ensemble of 7022 environments.

In order to ensure that each environment has the same number of objects, which is necessary for our
network architecture, we add ‘phantom objects’ to each environment with less than the maximum
number of objects (113). For these phantom objects, we set the true feature values to zero.

To train our artificial agents, we employed neural networks implemented in tensorflow (Abadi et al.,
2015) with the tf-agents library (Guadarrama et al., 2018). We used proximal policy optimization
(PPO) (Schulman et al., 2017) to define the loss function, and trained using Adam (Kingma & Ba,
2014) with exponential learning rate decay.

Since PPO is an actor-critic method, we specified two neural networks which only differed in the
output layer (Figure A.3). Both networks consist of a preprocessing layer which represents inputs
(see below), then a series of 3 densely connected layers of 113 units each, followed by an output
layer (a single value for the critic, an action distribution layer for the actor).

The preprocessing layer first represents a belief states in the meta-MDP as a list of 4 tensors

• F , a 113× 6 matrix of the mean feature values (see Section 2).

• J , a 113× 6 matrix with the corresponding precisions.

• ftarget, a 1× 6 vector with the true values of the target object’s features.

• xo, a 113×2 matrix with the horizontal and vertical coordinates of each object, normalized
so that the screen maps to the interval [−1, 1]. For phantom objects, we set xo to (0, 0), the
screen center.

• po, a 113×1 vector with the output of Equation 2. We set po to 0 for phantom objects, then
re-normalize to ensure the sum of po over non-phantom objects equals 1. Although po is a
deterministic function of F , J and ftarget and therefore provides no additional information
to the agent, we include it in the state representation to accelerate learning.

The preprocessor then passes each of these tensors through a single dense layer with 113 units and
concatenates the outputs into a single tensor which represents the belief state.

In preliminary results with this setup, we found that the learned agents were not able to achieve
returns exceeding those of the ideal observer heuristic. Thus, we performed two additional modifi-
cations to the state and action space to allow the network to more easily learn policies that match
or outperform the ideal observer. First, when passing a belief state to the preprocessing layer, we
re-order objects by rank order according to the posterior, and we apply the same re-mapping for the
action space. In other words, the first rows of F and J , and the first entry of xo, always correspond
to the object that is most likely to be the target according to the belief state; action 1 corresponds to
fixating on that object. Therefore, the heuristic policy can easily be represented and learned by the
network. Additionally, we initialize network with a bias towards picking action 1, thereby encour-
aging it to explore policies similar to the ideal observer. With these modifications, we found that the
artificial agents are able to learn policies similar to the heuristic agent, with similar returns, but not
outperform the ideal observer heuristic. Although these deep RL results reflect a work in progress,
the difficulty of exceeding the heuristic agent’s return suggests that the ideal observer heuristic is a
good policy for the meta-MDP and potentially close to optimal.
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Figure A.3: Network architecture. A policy and value network each received a set of inputs
consisting of object locations, object features, target features and the posterior over which object
is the target.

A.6 MODEL COMPARISON

To compare different variants of the ideal-observer model, we simulated 100 fixation trajectories per
scene. We then computed the proportion of times that the model looked at each object for a given
scene. To compare each resulting scene-wise probability distribution with the empirical distribution,
we used cross-entropy, fitting a lapse rate for each individual participant. We report this cross-
entropy metric averaged across scenes, and subtracted from a baseline model which assumes uniform
relative looking times across all objects. Note that in its current iteration, the model does not account
for potential variation across participants or scenes in the object kernel. In ongoing work, we are
employing Approximate Bayesian Computation methods to obtain posterior probability distributions
for the kernel width and lapse rate parameters of the model.
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