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ABSTRACT

The assignment of credit to the appropriate preceding stimuli is of crucial impor-
tance in Reinforcement Learning (RL). One aspect of understanding the neural
underpinnings of this process involves understanding what sorts of stimulus repre-
sentations support generalisation. Successor Features (SFs) achieve generalisation
through a predictive representation: states that predict similar futures are similarly
represented. Another dimension of credit assignment involves understanding how
agents handle uncertainty about learned associations, using probabilistic methods
such as Kalman Temporal Differences (KTD). Combining these approaches, we
propose using KTD to estimate a distribution over SFs. Kalman SF captures un-
certainty about the estimated SFs as well as covariances between different SFs.
We show that, unlike vanilla SF methods, Kalman SF exhibits partial transition
revaluation, as humans do in a decision making experiment and as rodents do
in an associative learning study. We conclude by discussing future applications
of Kalman SF as a model of the interaction between predictive and probabilistic
reasoning.

1 INTRODUCTION

Predictive representations are useful for supporting planning, generalisation and transfer in artificial
intelligence (Boots et al., 2011; Lehnert & Littman, 2018), and for understanding structure learning
in humans and other animals (Stachenfeld et al., 2017; Whittington et al., 2019). To understand how
the brain achieves flexible inference of such predictive models would be of great value for cognitive
science as well as for brain-inspired machine learning research. Here we focus on a predictive
representation known as the Successor Representation (Dayan, 1993) – and its generalisation to
function approximation known as Successor Features (SFs; Barreto et al., 2016). SFs generalise
over stimuli that predict similar futures and can provide a useful balance between efficiency and
flexibility. As in model-based (MB) algorithms, and in contrast to model-free (MF) algorithms, the
separate representation of transition dynamics and reward allows for flexible re-evaluation of value
in the face of changes to the reward function. Furthermore, unlike MB algorithms, evaluation using
SFs does not require expensive forward simulation. However, SFs are worse than MB at handling
changes in the environment’s transition structure because they are based on caching long-run future
predictions. In cognitive science and neuroscience, SFs offer a compelling explanation for a range of
behavioural and neural findings (Momennejad et al., 2017; Stachenfeld et al., 2017; Gardner et al.,
2018; Garvert et al., 2017; Bellmund et al., 2019).

While SFs offer a solution to some of the shortcomings of MF learning, existing methods for esti-
mating SFs do not take into account uncertainty. Representing uncertainty explicitly is useful for
multiple reasons: optimally combining prior and novel information, updating jointly predictions
that covary and guiding exploration. Here, we incorporate uncertainty. into the SF framework by
drawing on the Kalman Temporal Difference (KTD) method for value learning (Geist & Pietquin,
2010; Gershman, 2015). The resulting algorithm, Kalman SF, gives the agent an estimate of its un-
certainty as well as the covariance between different features. We show how this augments the SF’s
capacity to support revaluation following changes in transition structure, and how it explains aspects
of human decision making, as well as rodent behaviour during an optogenetics experiment.

1



Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

2 RESULTS

2.1 SUCCESSOR FEATURES AND UNCERTAINTY

An RL environment is a Markov Decision Process consisting of states s the agent can occupy,
transition probabilities Tπ(s′|s) of moving from state s to states s′ given the agent’s policy π(a|s)
over actions a, and the reward available at each state, for which R(s) denotes the expectation. An
RL agent is tasked with finding a policy that maximises its expected discounted total future reward,
or value:

V π(s) = Eπ

[ ∞∑
t=0

γtR (st) |s0 = s

]
(1)

where t indexes time step and γ ∈ [0, 1) is a discount factor that down-weights distal rewards.

We assume that the reward can be expressed as a linear combination of the state features φ(st) and
the reward expectation per feature u: R(s) = φ(s)Tu. In these cases the value function can be
decomposed into a product of the reward expectation u and the Successor Features ψπ(s) (Barreto
et al., 2016):

V (s) = ψπ(s)Tu. (2)
ψi is defined as the the expected discounted future sum of the occurrence of feature φi:

ψπ(s) = Eπ

[ ∞∑
t=0

γtφ(st)|s0 = s

]
(3)

We use linear function approximation ψπ(s) = WTφ(s), where W is a matrix parameterising the
approximation. SFs are the extension of Dayan’s (1993) Successor Representation (SR) to function
approximation, and they reduce to the SR in the tabular case. The logic is the same: SFs represent
each state in terms of the future (successor) states they predict under the current policy. Factorising
value into an SF term and a reward term permits greater flexibility because if one term changes, it
can be relearned while the other remains intact. Standard RL algorithms, such as TD learning,
produce a point estimate of the SFs (see equation 9 in Supplement A for the standard TD SF up-
date). While useful for approximating expected value, it is not capable of expressing uncertainty in
these estimates. We therefore propose using Kalman Filtering (Kalman, 1960) to optimally handle
uncertainty while learning the SFs. Applying the Kalman Temporal Differences (KTD) algorithm
(Geist & Pietquin, 2010; Gershman, 2015) to SFs, we update the weight matrix W and covariance
matrix Σ using the Kalman Filter equations:

Wt+1 = Wt + kt(δ
ψ
t )T (4)

Σt+1 = Σt + Z − ktk
T
t

λt
(5)

where δψt = φ(st) + γψ(st+1) − ψ(st) is the vector-valued successor prediction error, kt =
(Σt + Z)ht is an adaptive learning rate or Kalman gain, λt = hT (Σt + Z)ht + σ2

o is the residual
variance, and ht = φ(st) − γφ(st+1) is the discounted temporal derivative of the features – see
Appendix A for details and parameter values. Crucially, the Kalman Filter takes into account the
variance of and covariance between features when learning the SFs. This means that the agent can
learn about features that are not currently present, as long as they show nonzero covariance with the
current features. In the next sections, we show how this can be leveraged for flexible updates in the
face of changes to the environment’s transition structure.

2.2 PARTIAL TRANSITION REVALUATION SIMULATIONS

A key prediction of standard temporal difference SF learning is that “reward revaluation” (changes
in the reward function) should be easy to transfer to while “transition revaluation” (changes in the
transition dynamics) should not. Momennejad et al. (2017) tested whether or not this is the case in
human learning. In the first phase of their experiment, participants learned two different sequences of
states terminating in different reward amounts: 2→4→6→$1 and 1→3→5→$10 (see Figure 1A). In
the next stage, half of the participants were exposed to the transition revaluation condition, observing
novel transitions 4→5→$10 and 3→6→$1. The other half experienced “reward revaluation” in the
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form of novel reward amounts. 6→$10 and 5→$1 (Figure 1A). Importantly, the novel experiences
start from intermediate states such that transitions from 1 or 2 are not seen following phase 1. While
participants were significantly better at reward revaluation than transition revaluation, they were
capable of some transition revaluation as well (Figure 1C). Accordingly, the authors proposed a
hybrid SF model: an SF-TD agent that is also endowed with capacity for replaying experienced
transitions, permitting updating the SF vectors of states 1 and 2 through simulated experience (Figure
1F).

We simulated this experiment and found that the Kalman SF accounts for partial transition revalua-
tion even without replay (Figure 1C). Kalman SF correctly learns the SF matrix after phase 1 (Figure
2 in the Supplementary Material) as well as an estimate of the covariance between features, Σ. Un-
like TD-SF, Kalman SF uses the covariance matrix to estimate the Kalman gain and uses that to
update the whole matrix. This means that after seeing 3→ 6, it updates not just ψ(3) but also ψ(1)
because these entries have historically covaried (same for ψ(4) and ψ(2)) (Figure 2). To estimate
direct reward r̂, the agent uses a delta rule (Rescorla & Wagner, 1972). Model parameters are listed
in Supplement A, Table 1, and experimental parameters are kept the same as in Momennejad et al.
(2017).

Kalman SF thus provides an alternative explanation of the participants’ choices, without the need
for the memory buffer and computation time that replay requires. However, the updates in Kalman
SF are on-policy, meaning that the algorithm will do worse in off-policy planning problems, which
could prove to be a way to distinguish between the Hybrid and Kalman SF models.

V

Data TD SF Kalman SF

A B

C

D

E F G

Kalman SFHybrid SFTD SF

Figure 1: Kalman SF performance on transition and reward revaluation experiments. (A) Task
structure for reward revaluation and transition revaluation experiments. (B) Human performance
on transition and reward revaluation tasks. (C) Model predictions for classic model-free, model-
based or a hybrid of model free and model-based algorithms, TD-SF, hybrid SF and Kalman SF.
(D) Preconditioning and optogenetic unblocking paradigm designed by Sharpe et al. (2017). Blue
light cones indicate optogenetic activation of dopamine. (E) behaviour of rodents to preconditioned
cue that is unblocked by activation of dopamine neurons is sensitive to devaluation of the predicted
reward. (F) vanilla SF model is insensitive to reward devaluation in this paradigm. (G) Kalman SF
is sensitive to reward devaluation. Panels A– B reprinted with permission from Momennejad et al.
(2017). Panels D-F from Gardner et al. (2018).

2.3 SIMULATING DOPAMINE-DEPENDENT REWARD DEVALUATION SENSITIVITY

The fact that the vanilla TD SF cannot acquire state transitions that are not directly experienced
can also impair behaviour in the context of associative learning. To illustrate this, consider the
experiment shown in Figure 1D, designed by Sharpe et al. (2017) to show that the sensitivity to
reward devaluation, a hallmark of model-based learning, is dependent on dopamine transients. In
this experiment, animals started with two preconditioning phases, where they learned associations
between nonrewarding stimuli (A → X and AC → X). Normally, the A → X association
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impairs learning of the C → X association – a phenomenon known as blocking (Kamin, 1967) –
but the authors unblocked this learning by activating dopamine neurons using optogenetics during
preconditioning. X was then paired with a reward, after which the reward was devalued by pairing
it with sickness for half of the animals.

The key feature of this experiment is that the food reward was paired with illness in the absence
of any of the lettered stimuli introduced in the preconditioning stage. Thus, unlike the animals, a
vanilla SF agent is not sensitive to the reward devaluation (c.f. Figures 1E and 1F) (Gardner et al.,
2018). This is because in the vanilla SF, only stimuli that directly predict reward will change value
after devaluation. In this paradigm, however, C was never directly associated with food. Hence,
any algorithm that only updates associations with the currently active features will be insensitive to
devaluation.

We simulated this task using Kalman SF and found that, like the animals in Sharpe et al. (2017),
Kalman SF was sensitive to the reward devaluation paradigm. Like in the transition revaluation
task, this is because Kalman SF estimates a covariance between features, and uses this for a non-
local upate of SFs corresponding to features that are not currently active. Specifically, during the
pre-conditioning phase, a positive covariance between C and X is learned, which means that during
conditioning, C becomes directly associated to the food. Subsequent devaluation thus directly affects
C as well as X.

3 DISCUSSION

Successor Features constitute a middle ground between MB and MF RL algorithms by separating
reward representations from long-run state predictions. Here we learn a probabilistic SF model that
supports principled handling of uncertainty about state predictions and inter-dependencies between
these predictions. We exploit this feature to show that, unlike standard TD-SF, Kalman SF can
perform partial transition revaluation. In later work, we plan to test our model on other tasks that
could benefit from Kalman SF in a similar way, such as policy revaluation (a well-known weak spot
of TD-SR; Lehnert et al., 2017).

For both experiments modelled here, an alternative explanation would be that subjects used offline
replay to update the SFs. We therefore note the relative strengths and weaknesses of Kalman SF
when compared to this hybrid-SF approach. Replay requires a buffer to store experienced episodes
and a sufficient number of replays that information is propagated throughout the SF model. While
Kalman SF can incorporate information about long-range in a single update, it must store a covari-
ance matrix (although dimensionality reduction can reduce this burden; Fisher, 1998), and updates
are on-policy. There is compelling evidence in favor of both replay (Carr et al., 2011; Ólafsdóttir
et al., 2018) and probabilistic representations (Ma et al., 2006). Future work will consider how the
relative tradeoffs of these approaches constrain hypotheses.

We made several assumptions. The Gaussian assumption is clearly violated in the case of one-hot
state vectors. However, the model is sufficiently expressive that a good approximation can still be
found, and the Kalman SF model could be applied over arbitrary features for which the assumption
might hold. The random walk process noise might be ill-suited for step changes or sub-optimal when
the dynamics are predictable (Didier & Kayo, 2001). While we assume deterministic transitions and
linear function approximation here, it is straightforward to extend KTD to stochastic transitions and
nonlinear function approximation (Geist & Pietquin, 2010).

Probabilistic models provide a number of advantages for RL in terms of optimal credit assignment
(Kruschke, 2008) and uncertainty-minimising exploration (Dearden et al., 1998). Distributional
RL-trained neural network agents achieve state of the art performance (Bellemare & Dabney, 2017).
Furthermore, a range of animal learning findings suggest that animals are capable of probabilistic
reasoning (Gershman, 2015; Kruschke, 2008; Courville et al., 2006). Future work will involve
exploring these advantages in the context of SR learning.
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A SUPPLEMENTARY MATERIALS

A.1 LEARNING SUCCESSOR FEATURES

The SFs ψπ can be seen as a summary of the dynamics of the environment under the current policy
π. This allows for a factorised representation of V π in which the environment’s dynamics are
decoupled from the reward expectation u. One advantage of such a factorised representation is that,
when either the rewards or the dynamics change, only one of the modules needs to be relearned
(Dayan, 1993). Another consequence is that the agent now has two terms to learn: ψπ and u. In
some cases, φ is also learned from data (e.g. Barreto et al., 2018), but here we assume that φ is
given. In this section, we describe the standard temporal difference method for learning a point
estimate, and how this can be adapted to incorporate uncertainty.
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Name Symbol Value

Discount factor γ 0.9
Process covariance Z (1× 10−3)I
Observation variance σ2

φ 1
Prior covariance Σ0 0.1I
Prior SF matrix W0 I
Reward learning rate αr 0.1

Table 1: Parameter values

Firstly, note that R(s) = φ(s)Tu is a supervised learning problem, and can be solved with a simple
delta rule:

ût+1 = ût + αr(R(st)− φ(st)
T ût)φ(st), (6)

where αr is a learning rate and δR ≡ R(st)− φ(st)
T ût is the reward prediction error.

For learning the SFs, we note that, like value, they satisfy a Bellman equation, recursively relating
the SFs of subsequent states:

ψπ(s) = φ(s) + γEs′ [ψπ(s′)|so = s] , (7)

which means that in principle any RL method can be used to learn ψπ(s). Here we assume linear
function approximation:

ψπ(s) = WTφ(s), (8)
where W is a matrix parameterising the approximation. Intuitively, W encodes how much each
feature predicts every other feature. Combining this with temporal difference learning leads to the
following SF-TD weight update:

Wt+1 = Wt + αψφ(st)(δ
ψ
t )T (9)

where αψ is a scalar learning rate and δψt is the vector-valued successor prediction error:

δψt = φ(st) + γψ(st+1)−ψ(st) (10)

encoding surprise about the occurence of each feature.

It can be easily seen that, in the tabular case (where discrete states are encoded with one-hot fea-
ture vectors φ) this reduces to the Successor Representation originally described by (Dayan, 1993).
Furthermore, the learning rule in equation 9 will only update the features currently active in state
st, which, in the tabular case, will mean that only the row in W that corresponds to the current state
will be updated. We refer to such updates as local. Exclusively local updates lead to problems when
something in the transition structure changes because SFs rely on caching long-run state estimates
(Russek et al., 2017). Hence, local changes in the transition structure require non-local updates to
the SF matrix.

A.2 KALMAN SUCCESSOR FEATURES

Algorithm 1: Kalman Successor Features
Initialization: priors W0 and Σ0 ;
for t← 1, 2, ... do

Observe transition (st, st+1) ;
Compute statistics of interest ;
λt = hT (Σt + Z)ht + σ2

φ ;
kt = (Σt + Z)ht ;
δψt = φ(st) + γψ(st+1)−ψ(st) ;
Correction step ;
Wt+1 = Wt + kt(δ

ψ
t )T ;

Σt+1 = Σt + Z − ktk
T
t

λt

end

To alleviate this problem, we draw on the Kalman Temporal Differences (KTD) method developed
by Geist & Pietquin (2010), which combines Kalman Filtering Kalman (1960) and temporal dif-
ference learning to optimally handle uncertainty while learning the value function. Gershman has
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shown that KTD captures a range of phenomena in animal behaviour (2015) and dopamine responses
(2017) during associative learning.

Applying these ideas to SFs, we assume that there is an underlying, hidden Successor Representation
weight matrix W , of which state observations φ are noisy observations. The probabilistic model
consists of an evolution equation describing the evolution of the hidden weights, and an observation
equation describing how the hidden SF relates to the observations.

The evolution equation describes the evolution of the weights as a random walk:

Wt = Wt−1 + nZ (11)

where nZ ∼ N (0, Z) is the process or evolution noise, which is Gaussian with a diagonal covari-
ance matrix Z.

The observation equation describes how the observations relate to the hidden SF:

φ(st) = WT
t ht + nφ (12)

where we have defined ht = φ(st)−γφ(st+1) as the discounted temporal derivative of the features
(see Geist & Pietquin, 2010), and nφ ∼ N (0, σφ) is the observation noise, which is drawn from a
one-dimensional Gaussian with variance σφ.

We are thus faced with the problem of tracking the most likely Wt given the sequence of previous
state observations φ1...t. Applying the Kalman Filter equations (Kalman, 1960) to this inference
problem, we update the weight matrix W and covariance matrix Σ as follows:

Wt+1 = Wt + kt(δ
ψ
t )T (13)

Σt+1 = Σt + Z − ktk
T
t

λt
(14)

where δψt is the successor prediction error from equation 10,

kt = (Σt + Z)ht (15)

is the Kalman gain, an adaptive, feature-specific learning rate. Crucially, as shown in equation
15, the Kalman gain is dependent on the covariance between features given by Σ. This means
that agents can learn simultaneously about features that covary, even when those features are not
currently present, which is a feature that vanilla SF learning methods lack (Russek et al., 2017;
Gardner et al., 2018; Gershman, 2018).

Finally, the residual variance is given by λt = hT (Σt + Z)ht + σ2
φ. The Kalman SF algorithm is

listed in Algorithm 1, and parameter values are given in Table 1.

A.3 ADDITIONAL INFORMATION

Figure 2: The SF matrix estimated by Kalman SF in the experiment of Momennejad et al. (2017)
after (left) learning (phase 1), (middle) re-learning (phase 2) and (right) as it would be after complete
transition revaluation.
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