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ABSTRACT

Artificial neural networks are known to generalize poorly to new examples; al-
though they excel at representing data observed in the training set, they are unable
to represent data drawn from different distributions. In the mammalian brain,
evidence suggests that sleep promotes generalization of learned examples. To ad-
dress the validity of this hypothesis, we utilized a previously developed spiking
neural network trained with spike-timing dependent plasticity (STDP) to perform
digit classification on the MNIST dataset. We demonstrate that incorporating an
offline, sleep-like period after training leads to generalization and robustness to
novel inputs.

1 INTRODUCTION

Although artificial neural networks (ANNs) can rival human performance on various tasks, ranging
from complex games (Silver et al. (2016)) to image classification (Krizhevsky et al. (2012)), they
have been shown to underperform when the testing data differs in specific ways even by a small
amount from the training data (Geirhos et al. (2018)). This lack of generalization presents several
issues when ANNs are utilized in the real world. Primarily, ANNs are often trained on refined
datasets of images designed to best capture the image content, whereas in real-world scenarios, they
may be tested on disturbed or noisy inputs, not observed during training. Creating more robust
neural networks will pave the way forward for using these promising neuro-inspired architectures in
the real-world.

It has been hypothesized that in the mammalian brain sleep helps to create generalized representa-
tions of the information learned during the awake state (Stickgold & Walker (2013)). Sleep has been
identified as being critical for memory consolidation - a process of converting recent memories into
long-tern storage (Rasch & Born (2013)). During sleep, there is reactivation of neurons involved
in previously learned activity (Stickgold (2005)) and this reactivation is likely to invoke the same
spatio-temporal pattern as the pattern observed during training in the awake state (Wilson & Mc-
Naughton, 1994). Sleep reactivation, or replay, serves to strengthen synapses involved in a learned
task through spike-timing dependent plasticity rules (STDP). Sleep, through STDP, can increase a
subject’s ability to form logical connections between memories and to generalize knowledge learned
during the awake state (Payne et al. (2009)).

Similarly, research suggests that sleep can help extract the gist of a task by strengthening connections
pertinent to all memories while weakening connections, through synaptic downscaling, relevant to a
single, spurious memory (Lewis & Durrant (2011)). This body of neuroscience work suggests that a
sleep-like phase applied in training neural networks may allow for gist extraction of the training data,
leading to increased generalization and robustness to the underlying distribution of the training data.
Our hypothesis is that sleep could aid in increasing a neural network’s generalization performance by
reducing the impact that small additions of noise can have on the network’s classification accuracy.

2 NETWORK ARCHITECTURE AND SIMULATED SLEEP
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Figure 1: Network architecture and sleep changes
(adapted from Diehl & Cook (2015)). Changes to
network during sleep include presenting the average
image and increasing leak and AMPA currents.

To address the validity of this hypothesis,
we utilized a spiking neural network trained
with STDP previously proposed to perform
digit cassification on the MNIST dataset
(see Diehl & Cook (2015) for details). The
MNIST dataset represents a simple task for
artificial intelligence whereby the network
must learn to classify grayscale images of
handwritten digits (LeCun et al. (1998)).
The spiking network consists of 3 layers: an
input layer, an excitatory middle layer and
an inhibitory layer. Neurons in the input
layer receive input proportional to the in-
tensity of each pixel in the MNIST images.
The input layer projects to a layer of excita-
tory neurons with an all-to-all connectivity
matrix and the weights of these connections
are updated by an STDP rule. In addition,
the excitatory layer projects to and receives
lateral inhibition (which promotes competi-
tion amongst neurons) from the inhibitory
layer. The neurons within each layer are
governed by leaky-integrate-and-fire dynamics. Additionally, each neuron in the excitatory layer
has a threshold parameter which is governed by a homeostatic rule to ensure balanced activity (see
Figure 1 for a summary of the architecture).
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Figure 2: Network is able to learn the digit classifica-
tion task. A. Test accuracy as a function of number of
training images seen. B. Receptive fields of neurons
in the excitatory layer form into 2-D spatial filters. C.
Network receptive fields at different stages in awake
(before sleep) training.

As the network is presented with more
images, the network is able to classify a
greater percentage of images correctly, by
modifying weights from the input to the
excitatory layer to compute 2-dimensional
spatial filters of the MNIST digits (see Fig-
ure 2A-C). 2-D receptive fields are com-
puted by reshaping the weights connecting
to a single neuron in the excitatory layer
into the same dimension as the input im-
ages. Then, these 2-D receptive fields are
aligned in order to visualize all receptive
fields learned by the network.

While this network can learn the task, it
only reaches high levels of performance (>
80%) after training on more than 100,000
images. We took a partially trained network
(between 20 and 80% of the full training im-
age set) and applied a sleep-like phase after
the learning phase. During simulated sleep,
we modified the intrinsic and synaptic cur-
rents to mimic changes in neuromodulator
levels, while presenting noisy Poisson input
based on the statistics of the MNIST input
(see Figure 1 for dynamical equation up-
dates). These changes capture cellular and
synaptic changes which occur during stage
3 sleep, and result in an increase in activ-
ity, mirroring the ”up-state” of slow-wave
sleep (Wei et al. (2016)). During sleep, the
same STDP and threshold updating rules
are used. We compared performance before
(awake) and after sleep by computing the
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classification of the network on different testing images. Classification is done by assigning each
neuron in the excitatory layer a label (0-9) based on which set of digits produce the maximum mean
firing activity in that neuron. Networks are tested from various random initializations (n = 5) to
measure variability of the training and sleep phases.

3 RESULTS

Figure 3: Sleep improves classification perfor-
mance. Accuracy before (blue) and after sleep
(orange) for different training levels, tested on
5 different network initializations.

Sleep improves performance on networks
trained with small training dataset. After train-
ing in the awake state, the network is able to accu-
rately classify the MNIST digits. However, at dif-
ferent levels of awake training (measured by how
many images in the training set the network has ob-
served), incorporating an off-line sleep period after
awake training notably increases classification ac-
curacy on a novel test set (Figure 3). Most notably,
at very small levels of training (1000 images), the
trained network classifies the test set with 20% ac-
curacy. However, after a sleep-like period where
noisy input is presented to the network, classifi-
cation accuracy reaches 60%. This effect is pro-
nounced even at higher levels of awake training,
suggesting that a sleep-like period can promote
one-shot learning and greater generalization of the
task structure.

Sleep promotes increased generalization.

As noted above, neural network-based classifiers
often suffer from poor robustness. If a network is trained on intact, undistorted images, then the
network will fail to classify distorted images, even if the distortions are not significant enough to
affect human-level perception. To test the effect of sleep on a network’s robustness, we added
noise to the MNIST images, either by adding random Gaussian noise or applying a blur filter to the
images (Figure 4A). We found that the network after undergoing a sleep period is able to classify
more images correctly even as the images are further distorted (Figure 4B). These results mirror
the results from biology which suggest that sleep can help a subject extract the gist of a task and
generalize knowledge learned during a waking period.

Figure 4: Sleep improves generalization to noisy images. A)
Examples of noisy and blurred images. B) Accuracy as a
function of noise added before and after sleep.

Sleep prunes task-irrelevant neu-
rons from the network. We next
analyzed which component of the
network, changing neuronal thresh-
olds or synaptic plasticity, con-
tributed the most to the accuracy
increase after sleep. We observed
that most neurons experienced an
increase in their thresholds due to
the constant activity presented dur-
ing sleep and the homeostatic rule
used to change thresholds (Figure
5A). However, neurons with well-
formed 2-D receptive fields were
qualitatively more likely to have de-
creasing thresholds after sleep (Figure 5C). Oppositely, neurons with noisy 2-D receptive fields
were more likely to experience an increase in their firing thresholds following sleep (Figure 5D). We
quantified this phenomenon by looking at the average neighborhood pixel variance using 3x3 pixel
squares. Receptive fields with low neighborhood pixel variance are likely to be more refined since
there is little variability between neighboring pixels. In contrast, noisy receptive fields should have
high neighborhood pixel variance. There was a significant correlation between neighborhood pixel

3



Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

variance and threshold change (Figure 5B), suggesting the hypothesis that sleep improves perfor-
mance and robustness by pruning task-irrelevant neurons from the network by increasing their firing
thresholds.

We confirmed this as the main source of improvement after sleep by testing the network in four
conditions: using either before- or after-sleep weights and before- or after-sleep thresholds. The
largest performance increase was observed when after-sleep thresholds were used (no significant
difference between normal sleep and only using after-sleep thresholds, p = 0.22). However, when
pre-sleep thresholds were used along with the STDP changes that resulted from sleep, performance
did not improve significantly. This suggests that in the default network architecture, sleep improves
performance by altering the thresholds in a manner in which task-specific neurons can respond more
acutely (because of reduced thresholds) to the images presented during testing.
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Figure 5: Task-irrelevant neurons fire less after sleep.
A. Number of neurons that have increasing or de-
creasing thresholds after sleep at various stages of
training. B. Average neighborhood pixel variance vs.
threshold change during sleep. C-D. Example recep-
tive fields for neurons with decreasing (left) or in-
creasing (right) thresholds

Finally, we analyzed the effect of reduc-
ing inhibition and fixing the thresholds dur-
ing sleep in order to determine the role
of synaptic plasticity changes that occur
during sleep on generalization. We were
able to see the same performance increase
after sleep by reducing inhibition in the
network, as competition between neurons
was reduced (normal sleep vs. only STDP
changes, p = 0.85). We explored the
synaptic weight changes during sleep and
uncovered two main principles (not shown
here). First, in neurons with well-formed
receptive fields, there is very little synap-
tic weight change after sleep. Second,
in neurons with task-irrelevant receptive
fields, there is an overall synaptic down-
scaling of connections, mirroring the results
from the threshold analysis above. Over-
all, these results support the role of sleep
in memory consolidation and generaliza-
tion of knowledge learned during the wak-
ing state. Moreover, this line of work
supports the synaptic homeostasis hypoth-
esis of sleep which suggests that slow-
wave sleep improves performance by down-
scaling synaptic weights (Tononi & Cirelli
(2006)).

4 CONCLUSIONS

In this study, we applied an off-like sleep-
like phase to the training phase of a spiking
network trained to perform the MNIST digit
classification task. We found that after any amount of awake training, adding a sleep phase, where
noisy Poisson input is passed through the network and activity is elevated, can increase the classi-
fication accuracy on a novel test set. Similarly, the network after sleep is able to respond to more
diverse representations of the image set, classifying noisy and blurred images more accurately than
before sleep. These results mirror work in biology which has shown that sleep can help extract the
gist of a task and generalize knowledge learned during the awake state (Stickgold & Walker (2013)).
Additionally, these results lend support to the synaptic homeostasis hypothesis which suggests that
sleep down-scales synaptic weights to make efficient use of brain space in a energy-conserving man-
ner (Tononi & Cirelli (2006)). Our experiments suggests that down-scaling of synaptic activity is
likely constrained to task-irrelevant neurons, thereby containing the representation of the task to a
subset of neurons.
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