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ABSTRACT

Guilt aversion induces experience of a utility loss in people if they believe they have
disappointed others, which promotes cooperative behaviour in human. In psycho-
logical game theory, a branch of behavioural economics, guilt aversion necessitates
modelling agents having theory about what other agents think, also known as
Theory of Mind (ToM). We aim to build a new kind of affective reinforcement
learning agents, called Theory of Mind Agents with Guilt Aversion (ToMAGA),
which are equipped with an ability to think about the wellbeing of others instead of
just self-interest. To validate the agent design, we use a general-sum game known
as Stag Hunt as a test bed. As standard reinforcement learning agents could learn
suboptimal policies in a social dilemmas (SDs) like Stag Hunt, we propose to use
belief-based guilt aversion as a reward shaping mechanism. We show that our
ToMAGA can efficiently learn cooperative behaviours in Stag Hunt Games.

1 INTRODUCTION

People in a group may be willing to give more and take less. This may appear irrational from
the individual perspective but such behaviour often enables the group to achieve higher returns
than individuals alone. In building artificial multi-agent systems to model such behaviours, it is
important to construct such social inductive biases about the reasoning of other agents - also known
as the Theory of Mind (ToM) (Rabinowitz et al., 2018; Gopnik and Wellman, 1992). ToM enables
individuals to cooperate and often results in optimal group rewards (Shum et al., 2019; Takagishi et
al., 2010).

Maintaining fair outcomes for members of the group results in greater community good, and agents
who do so are termed ‘inequity averse’ (Hughes et al., 2018). Other mechanisms stem from guilt
(Haidt, 2012), requiring one to put themselves in the others’ shoes (Chang et al., 2011; Morey et al.,
2012). To be guilt averse, the agent needs higher-order ToM - i.e. be able to estimate what others
will do (0-order ToM), and what others believe the agent itself will do (1-order ToM) (Albrecht
and Stone, 2018). Inequity aversion, on the other hand, is conceptually different to guilt aversion
(Nihonsugi et al., 2015) and does not require ToM. We focus on the computational mechanisms
to control the interplay between the greedy tendencies of an individual and the inferred needs of
others in a reinforcement learning (RL) setting. In (Moniz Pereira et al., 2017; Rosenstock and
O’Connor, 2018), authors analysed the evolutionary dynamics of agents with guilt, but did not include
ToM. Initial work has examined integrating ToM and guilt aversion in a psychological game setting
(Battigalli and Dufwenberg, 2007). The first work to examine social dilemmas in a deep RL setting is
(Hughes et al., 2018; Peysakhovich and Lerer, 2018) who incorporate knowledge through behavioural
game theory when training the agents. However, guilt aversion, which plays a central role in moral
decisions (Haidt, 2012) has not been considered.

This paper addresses the open challenges of integrating ToM and guilt aversion in Multi-Agent
Reinforcement Learning (MARL) (Littman, 1994) and studies the evolution of cooperation in such
agents in self-play settings. We name the agent ToMAGA, which stands for Theory of Mind Agent with
Guilt Aversion. In our agents, learning is driven by not only material rewards but also psychological
loss due to the feeling of guilt if an agent believes that it has harmed others. Our construction of ToM
extends the work of (De Weerd et al., 2013) to build agents with beliefs about cooperative behaviours
rather than just primitive actions. Our RL agent uses a value function to make sequential decisions.
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Figure 1: The learning process in ToMAGA.

At each learning step, after observing the other agents’ actions, the agent updates its beliefs about the
other agents, including what they might think about it. Then it computes psychological rewards using
a guilt averse model, followed by an update of the value function.

Stag Hunt is a coordination game of two persons hunting together (Macy and Flache, 2002). If
they hunt stag together, they can both obtain a large reward h. However, one can choose to trap
hare gaining a reward, sacrificing the other’s benefit. The reward matrix is shown in Table 1.

C U

C h, h g, c
U c, g m,m

Table 1: The structure of Stag Hunt (h > c >
m > g).

The game has two pure Nash equilibria: (1)
both hunting stag, which is Pareto optimal; (2)
or both hunting hare. If one player thinks the
other will choose to hunt hare, her best response
will be hunting hare. This is because in the worst
case, if hunting hare, the player will receive a
reward m. This amount is larger than g which is
the worst case if she hunts stag. Therefore, both
hunting hare is the risk-dominant equilibrium.
Here, the dilemma is that the risk-dominant Nash equilibrium is not the Pareto optimal. There is one
mixed Nash equilibrium but its common outcome is not Pareto optimal. Because both will receive the
highest collective rewards when jointly hunting stag, both hunting stag is a joint cooperative policy.
Therefore, hunting stag is a cooperative policy that is also Pareto efficient. Our agents are able to
cooperate in the grid-world Stag Hunt Games, in which the rewards given to each agent depend on
the sequence of actions (at the policy level), not just on one action like in matrix-form games. We
build environments in a one-step decision game and in a multi-step grid-world. Our experiments
demonstrates that modelling guilt with explicit ToM helps RL agents to cooperate better than those
without ToM, encouraging faster learning towards cooperative behaviours.

Our contribution is to design and test a framework that brings the psychological concept of guilt
aversion into MARL, interconnecting social psychology, psychological game theory (Geanakoplos et
al., 1989), multi-agent systems and RL. For the first time, we explore and establish a computational
model for embedding guilt aversion coupled with ToM on RL framework and study it in the extended
Markov Games.

2 THEORY OF MIND AGENTS WITH GUILT AVERSION

We present our agent model named Theory of Mind Agent with Guilt Aversion (ToMAGA). The
internal working process of the agent is illustrated in Fig. 1. It has a ToM module that is augmented
with a guilt aversion (GA) component. Agent i maintains two beliefs: (1) zero-order belief b(0)i (lj)
for lj ∈ {C,U} which is a probability distribution over events that agent j 6= i follows a cooperative
or an uncooperative policy; and (2) first-order belief b(1)i (li) for li ∈ {C,U}, which is a recursive
belief, representing what agent i thinks about the agent j’s belief. We construct ToM1 agents as
in (De Weerd et al., 2013) (detailed in Supplementary Section A). The guilt averse agent i will
experience a utility loss if it thinks it lets the other agent down, which is realised through reward
shaping. More concretely, once beliefs are updated, the agent i first computes an expected material
value experienced by the agent j, which is φj =

∑
li,lj∈{C,U} b

(0)
i (lj)× b(1)i (li)× r(T )

j (li, lj) where
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Figure 2: Initial probability of second player following cooperative strategy (y-axis) vs Initial
probability of first player following cooperative strategy (x-axis). The colour shows the probability
(lighter values indicate higher probability) of first player following cooperative strategy after 500
timesteps of (A) GA agents without ToM and (B) ToMAGAs.

r
(T )
j (li, lj) is the material reward received after the last time step T . In addition, the agent experiences

a psychological reward of “feeling guilty”, caring about how much it lets the other down, as (Battigalli
and Dufwenberg, 2007):

r
(psy)
i (l̃i, l̃j) = −θij max

(
0, φj − r(T )

j (l̃i, l̃j)
)

(1)

where guilt sensitivity θij > 0. The reward is then shaped as r∗i = r
(T )
i (l̃i, l̃j) + r

(psy)
i (l̃i, l̃j). This

computation is based on an assumption that a guilt averse agent does not know whether the other
is guilt averse. Given the shaped reward, the RL agent learns by updating its value function based
on temporal difference algorithm TD(1) on the matrix-form Stag Hunt game. In the general Stag
Hunt games, we parameterise the value function and policy by deep neural networks trained by the
Proximal Policy Optimization (PPO) (Schulman et al., 2017).

We establish two observations: (1) If there exists a sequence of trajectories leading to φj > m and
θij >

m−g
min(φj ,c)−m with i, j ∈ {1, 2}, i 6= j, this game will have only one pure Nash equilibrium, in

which both players choose to cooperate (C,C); and (2) ToMAGA with higher guilt sensitivity θij
will have a higher chance of converging to this pure Nash equilibrium in self-play setting. The proof
is provided in Supplementary Section B.

3 EXPERIMENTS

3.1 MATRIX-FORM STAG HUNT GAMES

In this experiment we aim to answer the question: How does ToM model affect cooperative behaviour
in the self-play setting? We compare the behaviour of ToMAGAs and GA agents without ToM
that do not update first order beliefs. All agents have the guilt sensitivity θij = 200. The initial
probabilities of each agents to follow a cooperative strategy constitute the grid index in Figure 2). We
measure the probability of the agents following cooperative policy after 500 timesteps of playing the
matrix-form games with h = 40, c = 30,m = 20, g = 0. Figure 2 shown that ToMAGAs promote
cooperation better than the GA agents without ToM. This is more pronounced in settings where
agents are initialised with a low probability of following cooperative strategy (to the left bottom
corner of Figure 2-A and 2-B).

3.2 GRID-WORLD STAG HUNT GAMES

In the grid-world Stag Hunt games, two players simultaneously move in a fully observable 4 × 4
grid-world, and try to catch stag or hare by moving into their squares. Every timestep, each player
can choose among 5 actions {left, up, down, right, stay}. While the players need to
cooperate to catch the stag, i.e. both move to the position of the stag at the same time, each player
can decide to catch the hare alone. The rewards given to agents follow the reward structure of the
Stag Hunt games. In detail, if two players catch the stag together, the reward given to each player is
4.0. If two players catch the hares at the same time, the reward given to each player is 2.0. Otherwise,
the player catching the hare alone will receive a reward of 3.0, and the other will receive 0.0. The
game is terminated when at least one player reaches the hare, two players catch the stag, or the time
Tmax runs out. We are interested in two situations: At the beginning of the training process, agents
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Figure 3: Policies of individual learners (column A), agents with inequity aversion (column B), GA
agents without ToM (column C), and ToMAGAs (column D) when they start nearby the stag (the first
row) and nearby hares (the second row). Proportion of following cooperative (blue), uncooperative
(orange), unknown (green) behaviours (y-axis) vs Iterations.

are put (A) nearby the stag and far from the hares, and (B) put nearby the hares and far from the stag.
We hypothesise that it is easier for agents to learn to cooperatively catch stag if they are put nearby
stag at the beginning. After each iteration, each policy will be labelled as follows: (1) when both
hunt the stags, labels are (l̃i = C, l̃j = C); (2) when one hunts hare and other hunts stag, labels are
U and C, respectively; (3) when both hunt hare, labels are U ; and (4) if the game is terminated, the
policies of the agent who does not hunt hare or stag will be considered as unknown behaviours.

We construct deep RL agents having both value network and policy network trained by PPO
(Schulman et al., 2017). We compare the behaviours of four types of agents: (1) the indi-
vidual learners; (2) the agents with inequity aversion (IA) (Hughes et al., 2018); (3) the GA
agents without ToM; and (4) the ToMAGAs. Individual learners are agents that behave self-
interest and only optimise their rewards. IA agents are agents that have a shaping reward
r
(psy)
i = − θad

N−1 ×
∑
j 6=i

max(ri − rj , 0) − θdis_ad

N−1 ×
∑
j 6=i

max(rj − ri, 0), where N is the num-

ber of agents, θad and θdis_ad are advantageous and disadvantageous sensitivity, respectively (Fehr
and Schmidt, 1999).

Fig. 3 shows the policies of deep RL agents over the training process when they start nearby the stag
(the first row of Fig. 3) and nearby the hares (the second row of Fig. 3). In both cases, the individual
learners i.e. deep RL agents without social preferences cannot learn to cooperate and even learn the
uncooperative behaviours (to individually catch hares) since the very early stage of training process if
they start nearby hares. In contrast, the deep RL agents with social preferences can learn to cooperate
in both cases. When the agents are put nearby stag at the beginning, the performance of IA agents
is comparable to GA agents without ToM and the ToMAGA (the first row of columns B, C, and D
of Fig. 3). However, when initialised nearby hares, GA agents without ToM and ToMAGA learn
to cooperate faster than the IA agents (the second row of columns B, C, and D of Fig. 3). Also, in
this case, our ToMAGAs can learn to cooperate faster than the GA without ToM because the GA
without ToM does not update its first-order belief, leading to wrong predictions about the expectation
of others.

4 CONCLUSION

We present a new emotion-driven multi-agent reinforcement learning framework in which rein-
forcement learning agents are not only equipped with theory of mind, but also guilt aversion. We
studied the agent behaviours in Stag Hunt games, which simulate social dilemmas, whose Pareto
optimal equilibrium demands cooperation between agents making it hard for pure reinforcement
learning agents. We validated the framework in two environments for Stag Hunt games. Our results
demonstrate the effectiveness of the method over methods which are not belief-based guilt aversion.
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SUPPLEMENTARY

A THE FIRST-ORDER THEORY OF MIND AGENT

The ToM1 agents is constructed as in (De Weerd et al., 2013). It worth noting that it essentially
is a special case of the autoregressive integrated moving average (ARIMA(0, 1, 1)) model. After
interacting with the environment, agent i first predicts whether agent j uses a cooperative or an
uncooperative policy. The prediction is based on the current first-order belief b(1)i (li) as follows

l̂j = argmaxlj∈{C,U}Φij(lj) where

Φij(lj) =

∑
li∈{C,U}

b
(1)
i (li)× r(T )

j (li, lj),

where Φij(lj) is the value function agent i thinks agent j will have if agent j greedily maximises its
material reward. Now, agent i has two guesses about the agent j: the zero-order belief b(0)i (lj) and
policy type l̂j . To combine these two pieces of information into the belief about the action of agent
j, called a belief integration function U(lj). To do this, agent i maintains and updates a confidence
cij ∈ [0, 1] about its ToM1 as follows:

cij ← (1− λ)cij + λδ
[
lj = l̂j

]
for learning rate λ ∈ [0, 1] and identity function δ [·]. After updating the confidence, agent i then
computes its belief integration function

BI(lj)← (1− cij) b(0)i (lj) + cijδ
[
lj = l̂j

]
for all lj ∈ {C,U}. Now the agent i can update its zero-order belief as

b
(0)
i (lj)← BI(lj),

for all lj ∈ {C,U} and first-order belief as

b
(1)
i (li)← (1− cij) b(1)i (li) + cij × δ

[
li = l̃i

]
,

for all li ∈ {C,U}.

B PROOF OF THE OBSERVATIONS

Recall that we establish the following observations: (1) If there exists a sequence of trajectories
leading to φj > m and θij > m−g

min(φj ,c)−m with i, j ∈ {1, 2}, i 6= j, this game will have only one
pure Nash equilibrium, in which both players choose to cooperate (C,C); and (2) ToMAGA with
higher guilt sensitivity θij will have a higher chance of converging to this pure Nash equilibrium in
self-play setting.

Proof. This game will have only one pure Nash equilibrium (NE), in which both players choose to
cooperate (C,C), when two conditions hold:

(C1) h− θijmax(0, φj − h) > c− θijmax(0, φj − g)
(C2) g − θijmax(0, φj − c) > m− θijmax(0, φj −m)

for h > c > m > g, the sensitivity θij > 0, and the expected material value experienced by other
agent φj ∈ [g, h] described in section. (C1) holds within the structure of the Stag Hunt game. When
φj ∈ (c, h], (C2) is satisfied iff θij > m−g

c−m . When φj ∈ (m, c], (C2) is satisfied iff θij > m−g
φj−m .

Therefore, the first observation is proved. To prove the second observation, we consider the case when
φj ∈ (m, c], the condition θij > m−g

φj−m ⇔ φj >
(
m+ m−g

θij

)
, f(θij) implies φj ∈ (f(θij), c].

Because f(θij) is a decreasing function, the chance of φj belongs to (f(θij), c] is increasing when
θij is increasing, i.e. the second observation is proved.
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