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ABSTRACT

Recent works demonstrate the texture bias in Convolutional Neural Networks
(CNNs), conflicting with early works claiming that networks identify objects us-
ing shape. It is commonly believed that the cost function forces the network to take
a greedy route to increase accuracy using texture, failing to explore any global
statistics. We propose a novel intuitive architecture, namely CognitiveCNN, in-
spired from feature integration theory in psychology to utilise human-interpretable
feature like shape, texture, edges etc. to reconstruct, and classify the image. We
define two metrics, namely TIC and RIC to quantify the importance of each stream
using attention maps. We introduce a regulariser which ensures that the contribu-
tion of each feature is same for any task, as it is for reconstruction; and perform ex-
periments to show the resulting boost in accuracy and robustness besides impart-
ing explainability. Lastly, we adapt these ideas to conventional CNNs and propose
Augmented Cognitive CNN to achieve superior performance in object recognition.

1 INTRODUCTION

CNNs, considered as the computational model for primate visual system (Cadieu et al. (2014), Ku-
bilius et al. (2016)), have been shown to exhibit representation hierarchy in terms of feature selec-
tivities of edges, shapes and objects in early, mid and deep level units. The fact that complex objects
and shapes appear after edges seem to support a theoretical understanding of interpretable selectivi-
ties (Kriegeskorte (2015), Güçlü & van Gerven (2015)), and also agrees with the shape bias observed
in experiments with children(Ritter et al. (2017)). However, recent experiments demonstrate texture
bias as the reason for the superior performance of CNNs (Geirhos et al. (2019)). Similar conclusions
were drawn in Brendel & Bethge (2019), where texturised images of dogs were correctly classified,
even when global statistics were highly distorted. It seems that CNNs, in order to maximise ac-
curacy, greedily learn to use texture to solve the problem and thus fail to learn any global features
relevant for the task. Geirhos et al. (2019) attempts to reduce this bias by training an ImageNet pre-
trained CNN with a stylised texture image dataset. The method although novel, is ad-hoc and does
not address the underlying problem of greedy learning. Moreover, such techniques are difficult to
apply in tasks where high accuracy and robustness is important or where the image data is inherently
of low quality.
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Figure 1: The stages of Feature Integration Theory(FIT) Adapted from Treisman (1980)

Feature Integration Theory (FIT) In cognitive psychology, feature integration theory (FIT)
refers to an attention model which suggests that when perceiving objects, we synthesise and sep-
arate features initially, automatically and in parallel, directing attention serially afterwards to each
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item in turn (Treisman (1980)). This has been supported by many experiments (Treisman & Schmidt
(1982), Friedman-Hill et al. (1995), Robertson et al. (1997)).The features isolated in pre-attentive
stage include shape, colour, size curvature, lines etc. (Treisman (1986)) as summarised in Figure 1.

FIT provides a novel inspiration to combat our problem: we provide different feature selectivities as
input to the network, emulating the pre-attentive stage. It can now explore more avenues and benefit
from training with the knowledge of various features like texture, shape and edges.

This paper proposes CognitiveCNN, which attempts to utilise human-interpretable features like
shape, texture, edges etc. to reconstruct, and classify the image. We define two metrics, namely
Reconstruction Information Coefficient (RIC) and Task Information Coefficient (TIC) to quantify
the importance of each stream using attention maps. We also introduce Information Content Reg-
ulariser (ICR) which ensures that the contribution of each feature is same for any task as it is for
reconstruction and perform experiments to show the boost in accuracy and robustness besides im-
parting explainability. Lastly, we adapt these ideas to conventional CNNs and propose Augmented
Cognitive CNN to achieve superior performance in object recognition.

2 METHODOLOGY

2.1 PREPROCESSING AND TRAINING

Preprocessing Let the original dataset be {x, y}ni=1 where x is an image and y is the associated
label. Further, let f1, f2, ..., fn be a set of transforms which can be applied in preprocessing stage
to each x to obtain a feature. In our case, f1, f2, f3, and f4 are instantiated to extract shape, texture,
greyscale image and edges respectively, and we refer to each fi(x) as a stream of information.
Notably, each fi is a feature transform based classical image processing method.
Architecture Next, we describe our model’s architecture and training method. We represent
our model by the tuple (F1, F2, F3, F4, Frec, Fpred) where each Fi acts as a feature extractor for
the corresponding fi(x), converting it to a latent vector zi. Frec represents a neural network for
reconstructing the original image, and Fpred represents a neural network for predicting the labels
for a given set of feature streams. Note that each Fi are one half of an autoencoder with Di as the
decoder, as shown in Fig 2
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Figure 2: Experimental Setup: FIT model adapted to CNN for quantification and regularisation

Traning In the first stage of training, we train our feature extractors Fi(θi) with learnable pa-
rameters θi and reconstruction network Frec to reconstruct the original image from the given feature
vectors. The input to Frec is the concatenated latent vectors z1, z2, ..., zn (Figure 2 (a)). The purpose
of this part of training is to tune the feature extractors, and to gauge the importance of each stream
in the reconstruction for the image. This also formally ensures that all the information of the image
is captured in these four features. Formally, this stage of training can be summarized as

argmin
θ1,θ2,...,θn,θrec

D(Frec(F1(f1(x)), F2(f2(x)), ..., Fn(fn(x))), x) + λ

n∑
i=1

D(Di(Fi(fi(x))), fi(x))
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where D represents the pixel-wise Euclidean distance between original and reconstructed images.
Once the networks have converged, we train the prediction network Fpred to predict the label of
each input given its latent vectors z1, z2, ..., zn. (Figure 2 (b)) Formally, this stage aims to find

Fpred(θpred)← argmin
(θpred)

Lce(Fpred(F1(f1(x)), F2(f2(x)), ..., Fn(fn(x))), y)

where Lce is the cross-entropy loss between the predicted labels and true labels. Our model and
method is summarized in Figure 2.
Now that we have classified or generated the image from the human interpretable features, we want
to quantify the importance among them for the different tasks, for which we use attention maps.

2.2 MEASURING BIAS USING ATTENTION MAPS

In this section, we introduce a self-attention based mechanism to quantify the bias in the dataset
as well as our prediction network. There have been previous attempts to use attention as a tool for
neural feature selection (Wang et al. (2014), Gui et al. (2019)). We extend this technique to utilize
attention as a means to weigh the relative importance of each stream in prediction and reconstruction,
and further to regulate the flow of information to the prediction network to make it more robust.

Let Aj be the attention layer corresponding to the task. We add self-attention layers Apred and
Arec to the network which act on the concatenated latent vectors z1, ..., zn to give weighted vectors
ẑ1, ..., ẑn. These are then passed to Fpred and Frec to classify and reconstruct respectively. Formally,

ẑ = σ(Aj(z))� z, z = (z1 ‖ z2‖, ..., ‖zn)
where � represents element wise product, z is the concatenated latent vector.
In order to quantify the biases, based on these attention maps, we define the measures Reconstruction
Information Coefficient (RIC) and Task Information Coefficient (TIC) for each stream for a particular
example as

RICi(z) =
E(σ(Arec(z))i)∑n
j=1 E(σ(Arec(z))j)

TICi(z) =
E(σ(Apred(z))i)∑n
j=1 E(σ(Apred(z))j)

where E represents the mean of a vector over its dimensions. RIC and TIC represent the measure
of importance of each feature for reconstruction and prediction networks respectively. RICi indi-
cates a measure of the amount of content present for a given feature in an image, since it is the
importance that the network assigns to it while reconstructing the image, whereas TICi corresponds
to the importance of ith stream towards classifying the given image. Finally, we define the pre-
diction network to be biased if there is a mismatch in the relative importance of the streams, i.e.
TIC(= TIC1,TIC2, ...,TICn) is not equal to RIC(= RIC1,RIC2, ...,RICn).

2.3 INFORMATION CONTENT REGULARISER (ICR): CONTROLLING SHAPE-TEXTURE BIAS

Inspired from the measures defined in the previous section, we propose Information Content
Regulariser, a self-supervised regularizer to control the shape-texture bias in CNNs by adding∑n
i=1 ||TICi − RICi||2 to the loss function. This forces the prediction network to give as much

importance to a feature for a given task TICi, as much as it was important for reconstruction RICi.
We introduce different attention maps for classification and reconstruction tasks, as the exact same
components of the latent vectors might not be useful for both tasks, but we expect the general im-
portance of the streams to be the same.

3 EXPERIMENTS AND RESULTS

We performed experiments to show the efficacy of our measures and regularizer, and the perfor-
mance and robustness of our method. Since our tasks involve preprocessing using classical tech-
niques (refer Appendix for details), our method requires a dataset that has a white background, thus
we use the Amazon Domain of the Office-31(Saenko et al. (2010)) dataset for our experiments.

Accuracy We trained a network using our method (Figure 2) to classify the Amazon Office-
31 dataset and recorded the value of RICi and TICi for each feature, besides the accuracy. 4UC-
CogCNN reported an accuracy of 58.7%. When the network was regularized (4RC-CogCNN) using
ICR, TICi became similar to RICi and accuracy increased to 61.8%, as mentioned in Table 1. We
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Table 1: Comparison of importance of different streams

Stream RICi TICi
4UC-CogCNN 4RC-CogCNN

Shape 23.7% 21.0% 24.0%
Texture 22.3% 22.8% 22.2%
Greyscale 30.4% 31.4% 30.7%
Edges 23.4% 24.6% 23.0%
Accuracy 58.7% 61.8%

incorporate these ideas into our baseline CNN, and propose Augmented CogCNN (AugCogCNN)
which takes all 4 features as input alongside the image itself (Fig 3). We compared all the meth-
ods with a baseline CNN having the same architecture. All our 4 stream networks (4UC, 4RC,
AugCog CNN) perform superior to the baseline network, with the highest accuracy being achieved
by AugCogCNN at 62.5%. The results are mentioned in Table 2.Our reconstructions are exact and
thus the extracted features carry complete information as the real image and so comparable accura-
cies, as observed in Table 2, are expected.

Table 2: Comparison of accuracy and robustness of different streams
Method Accuracy

Original Under Miscue
Conventional CNN (Baseline) 58.3% 14.5%

2 Stream Regularised CogCNN (2RC-CogCNN) 57.6% 49.3%
4 Stream Unregularised CogCNN (4UC-CogCNN) 58.7% 52.0%
4 Stream Regularised CogCNN (4RC-CogCNN) 61.8% 56.9%

Augmented Cognitive CNN (AugCogCNN) 62.5% 11.1%

Robustness In order to test for robustness, we performed a texture-shape miscue experiment as
done in Geirhos et al. (2019), by classically generating images which had the shape from one class
and texture from another .Our CogCNN approach performed consistently better than the baseline by
a large margin. AugCogCNN however, based on conventional CNN architecture performed poorly,
at the cost of increase in accuracy.
We also performed an ablation of CogCNN by considering only 2 streams (shape-texture). The
network still performed comparable to baseline (only 0.7% decrease in accuracy) for a huge gain in
robustness. Our results are tabulated in Table 2

back
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Figure 3: CognitiveCNN: FIT Inspired modification to conventional CNNs

4 CONCLUSION AND FUTURE WORK

We showed that training a CNN with pre-processed images, as inspired from FIT, leads to an in-
crease in the accuracy and robustness against cue conflicts. We highlighted how the method imparts
explainability regarding contribution of various human-interpretable features like shape, texture,
edges etc in tasks like reconstruction and classification. We also developed a novel regulariser to
control bias between different features in the network. Our regularised and unregularised CogCNN
performed better than the baseline in terms of accuracy, besides being robust to cue conflicts, sup-
porting this proposed work. Lastly, we adapted the ideas to conventional CNNs for easy utilisation
and achieved the highest accuracy. Our future work includes processing the input image in-situ to
present an end-to-end CognitiveCNN so that it can be readily used on any dataset.
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