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Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{ostretcu, e.a.platanios, tom.mitchell, bapoczos}@cs.cmu.edu

ABSTRACT

When faced with learning challenging new tasks, humans often follow sequences
of steps that allow them to incrementally build up the necessary skills for per-
forming these new tasks. However, in machine learning, models are most often
trained to solve the target tasks directly. Inspired by human learning, we propose
a novel curriculum learning approach which decomposes challenging tasks into
sequences of easier intermediate goals, that are used to pre-train a model before
tackling the original task. We focus on classification tasks, and design the inter-
mediate tasks using an automatically constructed label hierarchy. We train the
model at each level of the hierarchy, from coarse labels to fine labels, transferring
acquired knowledge across these levels. For instance, the model will first learn to
distinguish animals from objects, and use this acquired knowledge when learning
to classify more fine-grained classes such as “cat”, “dog”, “car”, and “truck”. We
evaluate our method on several established datasets and show performance gains
of up to 7% increase in classification accuracy.

1 INTRODUCTION

Artificial Intelligence (AI) has seen an impressive leap in the last decade. However, these advances
were only possible through big engineering efforts for collecting large amounts of data. Humans,
on the other hand, are very good at learning new skills quickly using impressively small amounts of
data. Inspired by this, AI researchers have often attempted to create models that resemble the way
the human brain works (e.g., LeCun et al., 2015; Vaswani et al., 2017). However, one key difference
between human and machine learning that is often overlooked lies not in the model architecture, but
in the way that training data is presented to the learner. Unlike AI systems, humans do not simply
learn new and difficult tasks (e.g., solving differential equations) from scratch by looking at indepen-
dent and identically distributed examples of the task being performed by someone else. Instead, new
skills are often built progressively, starting with easier tasks and gradually moving to harder ones.
For example, students first learn learn to perform addition, multiplication, differentiation, and sim-
ple equation solving, before going on to learn about differential equations. Moreover, McClelland
& Rogers (2003) showed that human learning of classification problems follows a coarse-to-fine
structure, and furthermore that semantic dementia causes cognitive degradations in the reverse or-
der. Thus, we can think of human learning as often being aided by a curriculum which may be either
provided by a teacher, or learned directly by the student. In this paper, we propose an algorithm for
learning and using a curriculum in the context of machine learning.

Using curricula in machine learning was first proposed by Elman (1993). There are multiple lines of
work attempting to devise machine learning strategies inspired by human learning in which concepts
are being learned in order of increasing difficulty. Most such efforts are focused around scheduling
the order in which training data is presented to the learner (e.g., Wang et al., 2018; Zhou & Bilmes,
2018; Jiang et al., 2015; 2018; Bengio et al., 2009). Such strategies may be appropriate for some do-
mains, such as machine translation (Platanios et al., 2019), where we can assume that some training
examples are easier than others (e.g., short sentences are easier to translate than long ones), design
heuristics for measuring the difficulty of each example. However, we argue that for many common
learning tasks, particularly classification tasks, the errors that a model makes are often due to the
similarity of the classes being considered (e.g., it may be harder to distinguish between a cat and a
dog, than between a mammal and a reptile), rather than the absolute difficulty of a sample indepen-
dent of its class. To exemplify this, we show in Appendix A the confusion matrix of a convolutional
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neural network (CNN) classifier trained on the popular CIFAR-10 dataset (Krizhevsky et al., 2009).
This confusion matrix shows that the mistakes the model makes are not uniformly distributed among
all pairs of classes. Instead, they are mostly dominated by a select few class pairs that are difficult to
distinguish (e.g., “dog” and “cat”). Moreover, certain classes like “automobile” are mainly confused
with only a few other classes, suggesting that a sample is in many cases difficult to classify cor-
rectly due to its similarity to a few specific other classes, rather than due to being inherently difficult
(e.g., because the input image has a lower signal-to-noise ratio). Therefore, in such cases it may
be beneficial to consider the difficulty of the classes—rather than that of the data samples—to more
effectively perform curriculum learning.

To this end, we propose a novel algorithm for performing curriculum learning on the output space
of a model, rather than on its input space. Our algorithm is targeted at classification problems
and allows learners to set their own easy goals, towards learning to solve a difficult classification
problem. This is motivated by the fact that learners may benefit from learning to classify labels
in stages, starting with coarse-grained concepts (e.g., learning to distinguish between “animal” and
“object”), before moving on to more fine-grained concepts (e.g., “dog”, “cat”, “car”, “truck”). The
proposed algorithm relies on the intuition that the model can transfer the knowledge it has about
an easy task to better learn to perform a hard task. Our main contribution is a novel algorithm for
curriculum learning that can be applied to any classification problem without requiring any extra
human supervision, and is thus broadly applicable to many areas of machine learning. Furthermore,
it is model-independent, and can thus be used with any model architecture. We perform an empirical
evaluation on several established classification datasets and using several types of models, and show
that it consistently helps boost performance. The gains are especially prevalent in settings where we
have low amounts of training data, resulting in up to 7% improvements in classification accuracy.

2 PROPOSED METHOD

Figure 1: Our proposed learning paradigm. We
train multiple functions fθ1 , fθ2 , ..., fθM sequen-
tially, initializing the current function parameters
with the trained parameters of the previous one.

Consider a classification task that involves K
mutually-exclusive classes. Given a dataset of
supervised examples, {xi, yi}Ni=1, our goal is to
learn a classification function fθ : X → Y that
is parameterized by θ. X can refer to an arbi-
trary domain of inputs (e.g., images, text sen-
tences) and Y = 1K contains the one-hot en-
coded representation of the target class for each
sample. In what follows, we denote the set of
training examples {xi, yi}Ni=1 as two tensors, X
and Y, that contain all of the training examples
stacked along the first dimension. The standard
strategy for learning fθ is to initialize θ with
random values and iteratively update it by per-
forming gradient descent on a loss function that is defined over X and Y. In this work, we propose
a different approach: we learn a series of auxiliary functions fθ1 , fθ2 , ..., fθM , sequentially and one
at a time, where the final function fθM will become our target function, fθ. The auxiliary functions
fθ1 ,.., fθM−1

operate on the same input domain as fθ, but the classification task that they are per-
forming is coarser, meaning that they each learn to classify samples into fewer classes than the one
that comes after them. This means that fθ1 is learning an easier task than fθ2 , which is learning
an easier task than fθ3 , etc., up until fθM which is learning our actual target task. Our method thus
consists of two parts: (i) deciding on what the auxiliary tasks should be and providing a way to
generate training data for them, and (ii) providing a way for each learned function to transfer its
acquired knowledge to the function in the chain.

airplane ship truckcar bird horsedeer cat frog dog fθ3

fθ2

fθ1

Figure 2: Example label hierarchy generated
for the CIFAR-10 dataset. The colored areas
indicate the labels that are considered when
training each of the functions fθ1 , fθ2 , etc.

Generating Auxiliary Tasks. Our main require-
ment for the auxiliary tasks is that they form a se-
quence of increasing difficulty. Luckily there exists
a natural heuristic for gauging how difficult a task
is, and that is to look at the confusion matrix of a
trained model. We define this confusion matrix as
C ∈ [0, 1]K×K where

∑K
j=1 Cij = 1 and Cij is

the probability that the model predicts class j when
it should have predicted class i. Given an existing
model, this matrix can be approximated using the sample estimate of each probability on a valida-
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tion dataset. Given the original set of classes and the confusion matrix of a pre-trained model, we
expect that: (i) grouping classes that are often confused together to form clusters of classes, and (ii)
defining a new classification task where the goal is to predict the cluster instead of the specific class,
should result in an easier task. In fact, we can create a sequence of such functions fθ1 , fθ2 , ..., fθM of
increasing difficulty in the following way. First, we can use 1−C as input to a hierarchical cluster-
ing algorithm to form a label hierarchy, where the labels that are confused more often are connected
lower in the hierarchy. An example of such a hierarchy is shown in Figure 2. In our experiments, we
used a recent hierarchical clustering algorithm proposed by Bateni et al. (2017) and called affinity
clustering. We chose this because it ensures that the depth of the hierarchy is at most O(logK),
where K is the original number of classes, which is important in our case, as will become clear
later. Then, then we can consider each level of this tree as an auxiliary task, and form a sequence
of tasks by obtaining these levels in top-to-bottom order. In Figure 2, the first auxiliary task fθ1
solves a binary classification problem with 2 classes consisting of the clusters {“airplane”, “ship”,
“car”, “truck”} and {“bird”, “deer”, “horse”, “cat”,“frog”,“dog”}, and then the following task fθ2
further splits these clusters resulting in 4 classes. These tasks will be trained in order, starting with
the top level in the tree (i.e., l = 1), and transferring acquired knowledge from each level to the
next. A high-level overview of the procedure is illustrated in Figure 1, and our complete algorithm
for generating class hierarchies is shown in Algorithm 1 in Appendix B.

Transferring Acquired Knowledge. To transfer knowledge from a trained classifier fθl to fθl+1
, for

l ∈ {1, . . . ,M − 1}, we initialize the parameters of fθl+1
based on the parameters of the trained fθl

model. Let us assume that: fθ = fHθH︸︷︷︸
predictor

◦ fH−1
θH−1 ◦ · · · ◦ f1θ1︸ ︷︷ ︸

encoder

, where ◦ denotes function composition,

H is the number of layers of the network, and θ = {θ1, . . . , θH}. This is a simple decomposition
that applies to most deep learning models used in practice. Intuitively, the encoder converts the
input features to a high-level latent representation that is then processed by the predictor to produce
a probability distribution over classes. We denote the parameters of the predictor by θpredictor

and those of the encoder by θencoder. In our experiments, the predictor is simply the output layer
of a neural network, whose output dimensionality changes at every hierarchy level, depending on
the number of clusters for that level. When training fθl+1

, we initialize its encoder as θencoderl+1 =
θencoderl . The predictor parameters θpredictorl+1 are initialized randomly. Thus, knowledge transfer
in our regime happens through the initialization of the encoder, which often includes most of the
model parameters. Figure 1 illustrates this approach. θ1 is initialized randomly.

Putting the Pieces Together. Previously, we described the three main components of the proposed
approach: (i) constructing a class hierarchy, (ii) automatically generating auxiliary tasks and training
data for each one of them, and (iii) transferring acquired knowledge between learned functions for
the different auxiliary tasks. In Algorithm 3 from Appendix B, we show how these three components
fit together and provide an overview of the proposed coarse-to-fine curriculum learning algorithm.

3 EXPERIMENTS
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Figure 3: Accuracy mean and standard
error for the baseline and the curriculum
model, averaged over 5 runs.

We performed experiments on both synthetic and real
datasets. For all experiments, we used a convolutional
neural network (CNN) with 3 convolution layers followed
by a single densely connected layer. We first trained the
baseline model without using any curriculum and com-
puted its confusion matrix, which is then used to generate
a label hierarchy. Next, we trained the model at each level
of the hierarchy, top-down, using the nodes at the current
level as class labels. Details on the CNN architecture, loss
function, optimizer, batch size and other training param-
eters can be found in Appendix C.

Synthetic Datasets. In order to study different properties of the proposed method, we created a
synthetic dataset where a natural coarse-to-fine curriculum might arise and that is easy to analyze.
We refer to this dataset as Shapes. The inputs consist of 64 × 64 images depicting geometrical
figures. Each image contains one of 10 distinct shapes (circles, ellipses and regular polygons with
3-10 vertices) of one of three colors (magenta, cyan blue or grey), and is placed against a black
background. An example is shown in Appendix D, as well as further details on the dataset gen-
eration. We have made both the generated dataset and our dataset generation code available at
https://github.com/otiliastr/coarse-to-fine-curriculum. The results, shown in Figure 3,
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Table 1: Results on real classification datasets. We show the accuracy mean and standard error for
the baseline and the model trained with curriculum, over 5 runs initialized with random seeds, as
well as their difference, computed per run and then averaged.

Dataset #Classes #Samples Accuracy
Baseline Curriculum Difference

CIFAR-10 10 50,000 71.08± 0.22 71.81 ± 0.07 0.73± 0.25
CIFAR-10 10 20,000 64.99 ± 0.25 64.92± 0.34 -0.07± 0.41
CIFAR-10 10 10,000 60.94± 0.19 61.42 ± 0.27 0.48± 0.19
CIFAR-10 10 5,000 55.89± 0.37 56.84 ± 0.42 0.95± 0.36
CIFAR-10 10 1,000 42.52± 0.64 43.78 ± 0.23 1.26± 0.61
CIFAR-10 10 500 37.75± 0.56 39.23 ± 0.68 1.47± 0.37
CIFAR-10 10 100 24.81± 0.76 27.69 ± 0.31 2.87± 0.80
CIFAR-100 100 50,000 36.56± 0.35 40.93 ± 0.25 4.38± 0.25
CIFAR-100 100 20,000 29.68± 0.18 32.82 ± 0.63 3.14± 0.55
CIFAR-100 100 10,000 24.68± 0.79 27.66 ± 0.26 2.99± 0.73
CIFAR-100 100 5,000 18.26± 0.36 22.50 ± 0.48 4.24± 0.41
CIFAR-100 100 1,000 9.45± 0.27 11.01 ± 0.37 1.56± 0.22
Tiny-ImageNet 200 100,000 18.95± 0.87 25.43 ± 0.20 6.48± 0.67
Tiny-ImageNet 200 50,000 15.26± 0.25 22.20 ± 0.42 6.94± 0.18
Tiny-ImageNet 200 20,000 12.14± 0.15 15.65 ± 0.05 3.51± 0.17
Tiny-ImageNet 200 10,000 8.51± 0.06 10.85 ± 0.29 2.35± 0.35
Tiny-ImageNet 200 5,000 6.34± 0.11 7.94 ± 0.15 1.60± 0.13

indicate that our approach outperforms the baseline consistently, except for when the baseline is
very poor (13% accuracy). After investigating into what caused this we made two observations: (i)
when the baseline performs too poorly, the confusion matrix used to obtain our class hierarchy is
also very poor, resulting in the curriculum method not offering a significant performance boost, and
(ii) there is a point at which the amount of labeled data is too little to actually allow any model to
learn something meaningful; at that point we do not expect our curriculum approach to offer any
significant boost in performance over the baseline method. Figure 3 also shows that our curriculum
approach provides the biggest boost over the baseline method in the middle regime, in which there
are not enough samples for the baseline method to reach high accuracy, but there is enough to make
it a sufficiently good learner that the curriculum learning algorithm can improve upon. These results
also agree with previous results showing that pre-training is most beneficial in problems where la-
beled data is scarce. Moreover, we also inspected the generated label hierarchy. The most common
hierarchy obtained during the experiments is shown in Appendix E. Interestingly, this hierarchy is
very intuitive and compatible with what a human might have manually constructed; the first level
separates all shapes by color, and the second level further groups the shapes based on similarity
(circles and ellipses are grouped together, and all polygons are grouped together).

0 10 20 30 40 50 60 70
Epoch

0

10

20

30

40

50

60

70

A
cc

ur
ac

y 
(%

)

CIFAR-100

Baseline
Level 1
Level 2
Level 3

Figure 4: Accuracy per epoch for each
of the curriculum hierarchy levels, on
the CIFAR-100 dataset.

Real Datasets. We perform experiments on the CIFAR-
10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky,
2009), SVHN (Netzer et al., 2011) and Tiny-ImageNet (Li
et al.) datasets. CIFAR-100 contains labels at two levels of
granularity, 100 fine-grained labels and 20 coarse-grained
labels, and we experiment with both. Dataset statistics are
shown in Appendix G. We use the same model and setup
as before. The results for CIFAR-10, CIFAR-100 and Tiny-
ImageNet are shown in Table 4, and results for the re-
maining datasets are shown in Appendix H. Our approach
is able to boost baseline performance for all datasets, es-
pecially in the cases with limited training data. On the
datasets with a larger number of classes, CIFAR-100 and
TinyImageNet, our approach consistently outperforms the baseline by a significant margin, regard-
less of the amount of training data. To understand how the curriculum has been trained, we show
one of the most commonly generated label hierarchies for CIFAR-10 in Figure 2, and for CIFAR-100
in Appendix I. Even for CIFAR-100 where we have 100 labels, the hierarchy only contains two aux-
iliary levels with 6 and 27 clusters, respectively, meaning that we would have to pay at most 3 times
the computation time for these test accuracy improvements. In practice, the actual computation time
is much less than that, because each hierarchy level now needs fewer iterations to converge than the
baseline, as shown in Figure 4. Nevertheless, this extra computation occurs only during training,
and there is no extra cost at inference time.
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APPENDIX

A CONFUSION MATRIX ON THE CIFAR-10 DATASET
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Figure 5: Confusion matrix for a CNN classifier on the CIFAR-10 dataset. Each element at position
(i, j) indicates the ratio of times the model wrongly classifies an image as class j instead of the
correct class i. The diagonal elements have been removed for visualization purposes.

B ALGORITHMS

Algorithm 1: Generate Class Hierarchy
// This algorithm generates a class hierarchy.

Inputs: Number of classes K.
Training data {xi, yi}Ni=1.
Trainable baseline model fθ .

1 Train fθ on the provided training data {xi, yi}Ni=1.
2 Make predictions Ŷ on a validation set using fθ .
3 Estimate confusion matrix C ∈ [0, 1]K×K using Ŷ.
4 Compute the cluster hierarchy,H, by applying affinity clustering on the

original class, using 1−C as the matrix of pairwise distances between
them.

5 clustersPerLevel← []

6 for l← 1, . . . , depth(H) do
7 clustersPerLevel[l]← []

8 foreach n ∈ H.nodesAtDepth[l] do
9 Create cluster c by grouping the leaves of the sub-tree rooted at n.

10 clustersPerLevel[l].append(c)

Output: clustersPerLevel.
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Algorithm 2: Transform Labels
// This algorithm computes the transformed target labels for the

// provided clusters.

Inputs: Original labels {yi}Ni=1.
Set of clusters {ck̂}

K̂
k̂=1

, where
each cluster ck̂ is a set of labels.

1 originalToNew← Zero-initialized array of length K.
2 for k̂ ← 1, . . . , K̂ do
3 foreach Label l ∈ ck̂ do
4 originalToNew[l]← k̂

5 newLabels← Zero-initialized array of length N .
6 for i← 1, . . . , N do
7 newLabels[i]← originalToNew[yi]

Output: newLabels.

Algorithm 3: Coarse-To-Fine Curriculum
// This is an overview of the proposed algorithm.

Inputs: Number of classes K.
Training data {xi, yi}Ni=1.
Trainable baseline model fθ .

1 clustersPerLevel← GenerateClassHierarchy(K, {xi, yi}Ni=1, fθ)
2 M← clustersPerLevel.length

// Train the model at each level of the hierarchy.

3 originalLabels← [1,...,K]

4 for l← 0, . . . , M - 1 do
5 clusters← clustersPerLevel[l + 1]

6 newLabels← TransformLabels( {yi}Ni=1, clusters)

7 if l = 0 then
8 θencoderl+1 ← random().
9 else

10 θencoderl+1 ← θencoderl

11 θ
predictor
l+1 ← random().

12 Train fθl+1 using newLabels as the target labels.
Output: fθ[M] .

C EXPERIMENTAL DETAILS

The Convolutional Neural Network used in our experiments contains the following layers:

1. Convolution: 2D convolution using a 3 × 3 filter with 32 channels, followed by ReLU
activation.

2. Max pooling using a 2× 2 window.
3. Convolution: 2D convolution using a 3 × 3 filter with 64 channels, followed by ReLU

activation.
4. Max pooling using a 2× 2 window.
5. Convolution: 2D convolution using a 3 × 3 filter with 64 channels, followed by ReLU

activation.
6. Fully connected layer performing a linear projection to the output dimension (i.e. number

of classes), returning logits.

We implemented our method on top of the TensorFlow framework (Abadi et al., 2015). All
models were trained by minimizing the softmax cross-entropy loss function using the Adam op-
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timizer (Kingma & Ba, 2015). We use the default TensorFlow parameters for the optimize rand set
the learning rate to 0.001 for a batch size of 512 samples. We also employed early stopping by ter-
minating training when validation accuracy did not improve within the last 50 epochs. We report test
accuracy statistics for the iteration that corresponds to the best validation set performance. The val-
idation dataset is obtained by setting aside 20% of the training examples, chosen randomly. Finally,
note that all our experiments were performed using a single Nvidia Titan X GPU, and code for repro-
ducing our results is available at https://github.com/otiliastr/coarse-to-fine-curriculum.

D SHAPES DATASET

Figure 6: Example of geometrical shapes included in the dataset.

The position of each shape within an image, its size and its rotation angle are chosen randomly from
a pre-specified range, as well as its color. The generated dataset contains 50, 000 samples (5, 000
per shape), split into 40, 000 training and 10, 000 testing samples. Given a dataset that contains a
fixed number of samples per shape, the task is to classify the specific geometrical figure present in
each image. Shapes of different color have distinct labels (i.e., the model must learn to distinguish
between a grey and magenta triangle). Thus, this classification task involves 30 classes.

The idea behind this generation process is that polygons with similar color and number of vertices
should look more alike and thus be more prone to be confused by the model (and similarly for circles
and ellipses). This kind of confusion forms the main motivation for the proposed method and thus
we expect our method to provide a significant performance boost in this setting.

E GENERATED LABEL HIERARCHY FOR SHAPES

The most common hierarchy generated during the experiments is the following:

Level 1: The shapes are grouped by color into 3 clusters.

Level 2: There are 6 clusters:

– [cyan circle,cyan ellipse],
– [cyan polygon3,cyan polygon4,...,cyan polygon10],
– [gray circle,gray ellipse],
– [gray polygon3,gray polygon4,...,gray polygon10],
– [magenta circle,magenta ellipse],
– [magenta polygon3,magenta polygon4,...,magenta polygon10],

where polygonk denotes a polygon with k vertices.

Level 3: Each shape has its own class.
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F DISTANCE METRIC EVALUATION

Table 2: Results on the Shapes dataset with
40, 000 samples, comparing different types of dis-
tance metrics used to generate the curriculum hi-
erarchy. We show the accuracy mean and stan-
dard error of the baseline model, that of the model
trained with curriculum, and the average differ-
ence between the two (calculated separately per
run and then averaged).

Distance Accuracy
Baseline Curriculum Difference

Confusion 66.69± 1.51 79.52± 3.22 11.99± 3.43
Similarity 66.69± 1.51 60.56± 2.77 -6.13± 4.01
Random 66.69± 1.51 60.77± 4.75 -6.19± 5.62

A natural question to ask is whether using the
confusion matrix as a distance metric between
classes is better than alternative approaches.
For example, what if we force classes that are
easily confused into different clusters early on?
Could that help the model focus on them ear-
lier and learn to handle them better? To answer
these questions, we also tested our approach by
replacing the confusion matrix with a similar-
ity matrix (i.e., 1 - confusion matrix), and also
by using a completely random grouping of the
classes. The results are denoted as “Similarity”
and “Random”, respectively, and are presented
in Table 2. Interestingly, the curriculum ob-
tained using either of these approaches harms
the baseline performance. On the other hand, our confusion matrix formulation results in a large
performance boost. This suggests that using arbitrary class hierarchies and training using our cur-
riculum method is not sufficient; the actual choice of class hierarchy matters.

G DATASET INFORMATION

Table 3: Statistics for the multi-class classification datasets used in our experiments.
Dataset # classes # train # test
Shapes 30 40,000 10,000
CIFAR-10 10 50,000 10,000
CIFAR-100 Coarse 20 50,000 10,000
CIFAR-100 100 50,000 10,000
SVHN 10 73,257 26,032
Tiny-ImageNet 200 100,000 10,000

Table 3 shows the number classes, number of training instances, and number of test instances for
all the datasets used in our experiments. The data and specific train/test splits for CIFAR-10, CIFAR-
100 and SVHN were obtained from the tensorflow datasets package1 from TensorFlow. For
Tiny-ImageNet, we used the provided train/validation/test splits from Li et al..

H FURTHER RESULTS

Table 4: Results on real classification datasets. We show the accuracy mean and standard error for
the baseline and the model trained with curriculum, over 5 runs initialized with random seeds, as
well as their difference, computed per run and then averaged.

Dataset #Classes #Samples Accuracy
Baseline Curriculum Difference

SVHN 10 73,257 89.79 ± 0.12 89.63± 0.10 -0.17± 0.04
SVHN 10 20,000 86.06 ± 0.28 85.88± 0.39 -0.17± 0.63
SVHN 10 10,000 84.03 ± 0.32 83.74± 0.39 -0.19± 0.09
SVHN 10 5,000 81.66 ± 0.13 81.51± 0.54 -0.15± 0.42
SVHN 10 1,000 69.21± 0.27 72.46 ± 0.31 3.25± 0.44
SVHN 10 500 60.06± 0.82 64.71 ± 0.76 4.65± 0.25
SVHN 10 100 20.27± 0.90 20.79 ± 1.30 2.07± 0.84
CIFAR-100 Coarse 20 50,000 49.55± 0.32 50.38 ± 0.13 0.69± 0.35
CIFAR-100 Coarse 20 20,000 42.27 ± 0.17 42.04± 0.15 -0.23± 0.31
CIFAR-100 Coarse 20 10,000 38.96± 0.12 39.12 ± 0.28 1.15± 0.38
CIFAR-100 Coarse 20 5,000 33.52± 0.39 35.12 ± 0.25 1.60± 0.50
CIFAR-100 Coarse 20 1,000 22.21± 0.60 22.79 ± 0.24 0.59± 0.36
CIFAR-100 Coarse 20 500 18.54± 0.21 19.55 ± 0.56 1.01± 0.74
CIFAR-100 Coarse 20 100 11.28± 0.49 12.49 ± 0.40 1.21± 0.11

1https://www.tensorflow.org/datasets/catalog/
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I GENERATED LABEL HIERARCHY FOR CIFAR-100

• Level 1:
Cluster 1 : apple, pear, sweet pepper, orange, aquarium fish, sunflower, rose, orchid, tulip,

poppy, crab, lobster
Cluster 2 : baby, woman, girl, hamster, boy, man, fox, lion, snail, camel
Cluster 3 : flatfish, ray, shark, turtle, dolphin, whale, bear, chimpanzee, skunk, cattle, di-

nosaur, elephant, seal, otter
Cluster 4 : crocodile, lizard, shrew, beaver, porcupine, mushroom, kangaroo, tiger, leop-

ard, trout, possum, wolf, mouse, raccoon, squirrel, rabbit
Cluster 5 : lamp, cup, worm, chair, bed, table, keyboard, couch, snake, bicycle, motorcy-

cle, can, telephone, television, bottle, wardrobe, bowl, plate, clock
Cluster 6 : caterpillar, bee, butterfly, cockroach, spider, beetle
Cluster 7 : willow tree, forest, oak tree, palm tree, pine tree, maple tree, skyscraper,

rocket, tractor, train, tank, castle, bridge, house, streetcar, pickup truck, bus,
lawn mower, mountain, cloud, road, sea, plain

• Level 2:
Cluster 1 : apple, pear, sweet pepper, orange
Cluster 2 : aquarium fish, sunflower, rose, orchid, tulip, poppy
Cluster 3 : bowl, plate, clock
Cluster 4 : castle, bridge, house
Cluster 5 : streetcar, pickup truck, bus, lawn mower
Cluster 6 : fox, lion, snail, camel
Cluster 7 : skunk, cattle, dinosaur, elephant
Cluster 8 : mountain, cloud, road, sea, plain
Cluster 9 : crab, lobster

Cluster 10 : crocodile, lizard
Cluster 11 : lamp, cup
Cluster 12 : flatfish, ray, shark, turtle, dolphin, whale
Cluster 13 : baby, woman, girl, hamster, boy, man
Cluster 14 : willow tree, forest, oak tree, palm tree, pine tree, maple tree
Cluster 15 : mushroom, kangaroo, tiger, leopard, trout
Cluster 16 : possum, wolf, mouse, raccoon
Cluster 17 : seal, otter
Cluster 18 : squirrel, rabbit
Cluster 19 : skyscraper, rocket
Cluster 20 : tractor, train, tank
Cluster 21 : bear, chimpanzee
Cluster 22 : shrew, beaver, porcupine
Cluster 23 : worm, chair, bed, table, keyboard, couch, snake
Cluster 24 : caterpillar, bee, butterfly
Cluster 25 : cockroach, spider, beetle
Cluster 26 : bicycle, motorcycle
Cluster 27 : can, telephone, television, bottle, wardrobe
• Level 3:

Each class has its own cluster.
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