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ABSTRACT

Large-scale natural language understanding (NLU) systems have made impressive
progress: they can be applied flexibly across a variety of tasks, and employ mini-
mal structural assumptions. However, extensive empirical research has shown this
to be a double-edged sword, coming at the cost of shallow understanding: infe-
rior generalization, grounding and explainability. Grounded language learning ap-
proaches offer the promise of deeper understanding by situating learning in richer,
more structured training environments, but are limited in scale to relatively nar-
row, predefined domains. How might we enjoy the best of both worlds: grounded,
general NLU? Following extensive contemporary cognitive science, we propose
treating environments as “first-class citizens” in semantic representations, worthy
of research and development in their own right. Importantly, models should also
be partners in the creation and configuration of environments, rather than just ac-
tors within them, as in existing approaches. To do so, we argue that models must
begin to understand and program in the language of affordances (which define
possible actions in a given situation) both for online, situated discourse compre-
hension, as well as large-scale, offline common-sense knowledge mining. To this
end we propose an environment-oriented ecological semantics, outlining theoret-
ical and practical approaches towards implementation. We further provide actual
demonstrations building upon interactive fiction programming languages.

1 INTRODUCTION

“Ask not what’s inside your head, but what your head’s inside of.” (Mace, 1977)

Recovery of meaning is at the heart of the endeavor to build better natural language understanding
(NLU) systems. Semantics researchers study meaning representation, and in particular the relations
between language and cognitive representations (Gärdenfors, 2014).

A recurring point of contention in semantics research (Fodor & Pylyshyn, 1988; Mahon & Cara-
mazza, 2008) concerns the degree to which knowledge representation and language comprehension
involve a symbolic internal language of thought (LoT) (Fodor, 1975) or are embodied; i.e., grounded
in the brain’s systems for action and perception (Feldman & Narayanan, 2004; Barsalou, 2007).

Current deep-learning methods for large-scale NLU, such as BERT (Devlin et al., 2018), incorporate
minimal cognitive biases and assume primarily distributional semantics (Firth, 1957). Extensive em-
pirical research shows this to be a double-edged sword: while affording widespread applicability to
a variety of tasks, such methods are limited by impoverished training environments (static datasets,
narrow contextual prediction, etc.) and struggle in settings requiring deeper understanding, such
as systematic generalization (Lake et al., 2019; McCoy et al., 2019), common-sense (Forbes et al.,
2019) and explainability (Gardner et al., 2019).

Contemporary cognitive science can be seen as adopting a more holistic approach; integrating sym-
bolic, embodied and distributional accounts (Lupyan & Lewis, 2019), but also focusing on the
crucial ecological component (Gibson, 1979; Hasson et al., 2020): cognition emerges from brain-
body-environment interaction. Systematic regularities in the interactions play a key role in inducing
systematic linguistic (Narayanan, 1997) and knowledge (Davis et al., 2020) representations. These
interactional regularities differ in fundamental ways from statistical regularities available to current
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general NLU methods (Hasson et al., 2020), for example including perceptual, spatiotemporal and
causal dynamics (Rodd, 2020; Davis et al., 2020).

Situated (grounded) approaches (Mikolov et al., 2015; Liang, 2016) focus on mapping language
to executable forms, and highlight the importance of external environments (McClelland et al.,
2019); Hill et al. (2020) show the emergence of systemic generalization to be contingent on careful
task/environment design, rather than specific architectural engineering alone. However, while such
environments clearly play an important role in building NLU systems, they are (1) relatively narrow
and fixed in terms of semantics (2) costly to create, especially multi-modal environments.

Here we propose an approach to address this limitation and extend grounded language approaches
towards more general domains, by harnessing the power of language to also create and shape envi-
ronments, rather than just to induce literal execution within them. In this important, yet relatively
unexplored role, language helps structure semantic knowledge and serves as a proxy for expensive
embodied experience (Lupyan & Bergen, 2016). To efficiently accomplish this remarkable feat, hu-
mans use the language of affordances (Gibson, 1979; Glenberg, 2008) to construct “mental worlds”;
shaping interactions by specifying what can be done in various situations, from concrete to abstract.
We propose that NLU systems should learn to understand (parse) and use such language (e.g., “This
bag can hold up to 20kg before bursting”, see §2), which we suggest has a natural programmatic
equivalent in the behavioral programming paradigm, such as interactive fiction languages.

In summary, we make the following more concrete contributions and proposals:

• Ecological Semantics: Outline for a theoretical and practical approach to a semantic parsing
framework for creation as well as interaction with environments through language. Design con-
siderations are informed by contemporary cognitive science, AI/NLU research and programming
language theory (PLT).

• We propose methods to inject rich, actionable external knowledge into the framework at scale,
building upon data mining and automated knowledge base construction (AKBC) research.

• We make available1 simple interactive demonstrations as working examples showing how such
methods can be applied towards open challenges such as common-sense and causal reasoning.

2 MOTIVATING CHALLENGES: INCORPORATING WORLD KNOWLEDGE

Explicitly Provided Knowledge. Consider the example in figure 1, describing an everyday sit-
uation of shopping for fruit in a market. Completely trivial for humans, current NLU methods
find such “what-if” questions highly challenging, even though the relevant affordances are made
explicit in the text. A textual entailment model judges it very likely that “The bag bursts.” for
X ∈ {no,one,two,three}2.

Assumed World Knowledge. In this common, yet more difficult setting, the relevant knowledge
is implicitly assumed. Consider a prompt like “He put on a white t-shirt and blue jeans. Next, he
wore ”. A completion produced by GPT-2 (Radford et al., 2019) is “a gray cowboy hat, black cargo
pants, and white shoes. He also had a black baseball cap pulled low over his eyes”3.

Common-sense knowledge graphs are likely to be insufficient for such problems; as shown in Forbes
et al. (2019), “neural language representations still only learn associations that are explicitly written
down”, even after being explicitly trained on a knowledge graph of objects and affordances. As
suggested by the work, mental simulations are crucial to common-sense in humans (Battaglia et al.,
2013), allowing the dynamic, affordance-guided construction of relevant representations at run-time
as needed, rather than wasting valuable space in memorizing large, ever-incomplete relation graphs.

Importantly, the first problem should be simpler than the second: the required background knowl-
edge is made available in the text. It would be highly desirable to be able to act upon such informa-
tion. Recent work has begun to explore such capabilities (Zhong et al., 2020), but current methods
are largely limited in this respect (Luketina et al., 2019). In the following section, we propose a gen-
eral problem formulation for incorporating affordances, building upon cognitive linguistics theory.

1https://eco-sem.github.io/
2https://demo.allennlp.org/textual-entailment/
3https://talktotransformer.com/
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Figure 1: Inform7 ecological semantic parsing example for §2 challenge. (1) Input prompt (2)
Pre-existing, compiled knowledge (3) Situation knowledge: simulation configuration and indexical-
ization of referent objects (4) Run simulation to answer “what-if” question.

3 ECOLOGICAL SEMANTICS

Mental simulations and affordances feature centrally in contemporary cognitive linguistics research.
According to one such theory, the Indexical Hypothesis (Glenberg, 2008), language comprehension
involves three key processes: (1) indexing objects, (2) deriving their affordances, and (3) meshing
them together into a coherent (action-based) simulation as directed by grammatical cues. Impor-
tantly, affordances generally cannot be derived directly from words, but rather rely on context and
pre-existing object representations.

3.1 COMPUTATIONAL FORMULATION

The Indexical Hypothesis (IH) can be formulated naturally within the model-based framework used
in general AI mental simulation research (Hamrick, 2019). At the core of such frameworks is the
partially observable Markov Decision Process (POMDP) (Kaelbling et al., 1998), which governs the
relations between states (s), actions (a), observations (o) and rewards (r). Specifically, we focus on
the recognition4 I : O → S, transition T : S ×A→ S and policy π : S → A functions.

Pre-existing knowledge regarding the environment (objects and their affordances) can be seen to
be primarily represented by T , with the emulator model being the neural correlate (Grush, 2004;
Glenberg, 2008). In the POMDP formulation, for a linguistic input (or observation) x, IH can be
formulated as (1) compose an initial state representation I (x) = s0 of objects (we assume the
simple case where all objects are mentioned in x) (2) derive affordances, or the set of actions that
can be taken in the current situation (3) enact mental simulation by applying T with chosen action.
Typically x is composed of multiple utterances (x̄1, ..., x̄N ) and so the simulation may be composed
of multiple actions a = (a0, ..., aL−1). Slightly abusing notation, we can denote the full execution
T (s0,a) which yields a result state sL. IH can be seen as corresponding to the standard setting in
executable semantic parsing/grounded NLU works (Long et al., 2016):

Executable Semantic Parsing (Ex-SP). Given a linguistic input x and target intent (goal state)
g∗, output action sequence a such that T (I (x) ,a) = g∗. Most grounded/executable approaches
assume a fixed, programmatic, domain-specific T (navigation environments, SQL engine, etc.) and
focus on learning a policy mapping from x to a.

Our proposal thus focuses on “pushing the envelope” of T to allow grounded understanding of more
general language. IH discusses the comprehension process in cases where the relevant object and
affordance information already exists. But how do we learn such representations in the first place?
Embodied experience is one way, but a costly and slow one, so here we focus on the role of language
in shaping affordance knowledge, specifically modal language, like “All watermelons are portable.”

4Commonly denoted O−1, we denote here by I for Indexicalization.
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Such language can more naturally be seen as modifying5 the emulator T . Therefore, we propose
extending the representation of T to allow it to change in time, T (t), modified by special eco-actions
á. These do not change the current state, but rather only the executor (example in fig. 1). We denote
regular executed actions as à, and a scenario (containing possibly both à, á actions) as ǎ. The full
execution is then T (0:L−1) (s0, ǎ), which denotes applying T (t) at each timestep.

Ecological Semantic Parsing (Ec-SP). Given a linguistic input x and target intent (goal state) g∗,
output action sequence ǎ such that T (0:L−1) (I (x) , ǎ) = g∗.

Figure 1 shows how Ec-SP can be utilized towards addressing the challenge problem from §2, which
is not handled by current Ex-SP methods, as the input language is out-of-domain (so a specific
executor would need to be created). The implementation uses Inform7 (Nelson, 2005), an interactive
fiction (IF) language (see §4). Interactive versions of the examples from §2 are available online.

We distinguish between compiled knowledge vs. situation knowledge: the former refers to existing
knowledge encompassed by the emulator (analogous to code libraries that just need to be imported),
the latter is new knowledge defined online using eco-acts (analogous to writing a new program).
Clearly, a core issue to be managed is the scalable and incremental growth of the emulator: as in
regular programming, recurring ecological information (such as watermelons being portable) should
become part of the library, rather than having to be re-defined anew in every situation.

4 AFFORDABLE AFFORDANCES: TOWARDS IMPLEMENTATION

Programmatic emulation of environments requires an appropriate programming formalism with
which environments can be flexibly constructed and configured6. Our focus here is on purely text
based construction, from considerations of scale, to remain broadly applicable to general NLU;
multi-modal integration is an interesting future direction. We suggest that a natural paradigm for
such a purpose is Behavioral Programming (Harel et al., 2012), which can also be seen to include
certain IF languages, like Inform7 (Nelson, 2005). These languages are designed to be reminiscent
of natural language, and express semantics in terms of interactional affordances (indeed often using
modal verbs like can, mustn’t) (Harel et al., 2012). Current frameworks for creating custom IF train-
ing environments (Côté et al., 2018; Tamari et al., 2019) require extensive re-configuration for new
domains, and games must be pre-compiled rather than generated dynamically from textual inputs.
Most current IF works focus on solving existing games (Jain et al., 2019) or game construction for
human entertainment (Ammanabrolu et al., 2020).

Learning emulators at large-scale. This task is closely related to the grand AI challenge of
common-sense learning. In humans, common-sense is hard-coded through rich experience (Has-
son et al., 2020); it is reasonable to expect that approximating human emulators will require ex-
tensive hard-coding as well. In rendering this task tractable, We join Kordjamshidi et al. (2018) in
advocating a tighter loop between learning and programming to represent knowledge: AI should
be extensively utilized in hard-coding its own common-sense. Whereas earlier approaches typically
consisted of non-executable, relational knowledge graphs (KGs) (Speer et al., 2017), in our case
knowledge can be represented by code, executable in interactive simulations. KGs will likely be
useful for populating an initial “seed emulator”, as will AKBC methods for learning object (Elazar
et al., 2019) and action (Forbes & Choi, 2017) properties at scale. In Pustejovsky & Krishnaswamy
(2018), multimodal simulations are used to evaluate automatic affordance extraction. In Balint &
Allbeck (2017), game designers (for human games) utilized NLU methods for learning object affor-
dances. Finally, as symbolic knowledge is by nature incomplete, it will need to be superseded by
geometric, multi-modal knowledge representations (Gärdenfors, 2014; Pezeshkpour et al., 2018).

By affording NLU systems with the ability to programmatically emulate environments in the context
of both online discourse comprehension, as well as large-scale, offline common-sense knowledge
mining, we hope to advance research efforts towards grounded, general NLU.

5This is a delicate point- we currently assume the modification is valid, and leave a more thorough discussion
of the rules governing what is possible to future work.

6This preliminary approach is naturally biased towards literal language, which is easier to simulate than
more abstract language. While a detailed analysis is out of scope, we note that literal language is seen to lay
the neural foundations for abstract language understanding (Lakoff & Johnson, 1980; Davis et al., 2020)
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