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ABSTRACT

Research in developmental psychology consistently shows that children explore
the world thoroughly and efficiently and that this exploration allows them to learn.
In turn, this early learning supports more robust generalization and intelligent be-
havior later in life. While much work has gone into developing methods for explo-
ration in machine learning, artificial agents have not yet reached the high standard
set by their human counterparts. In this work we propose using DeepMind Lab
(Beattie et al., 2016) as a platform to directly compare child and agent behaviors
and to develop new exploration techniques. We outline two ongoing experiments
to demonstrate the effectiveness of a direct comparison, and outline a number of
open research questions that we believe can be tested using this methodology.

1 THE PROBLEM OF EXPLORATION

The problem of exploration is one of the most fundamental issues in reinforcement learning (RL):
how should an agent gather enough experience from different parts of the world in order to later
produce approximately optimal behavior? Questions surrounding exploration have been investigated
for as long as the field has existed (Thompson, 1933; Robbins, 1952; Gittins & Jones, 1979), and it
continues to be a major focus of research today, with recent approaches estimating various quantities
to guide exploration, such as visit counts (Bellemare et al., 2013; Ostrovski et al., 2017; Martin et al.,
2017; Tang et al., 2017; Machado et al., 2018), uncertainty (Osband et al., 2016; Burda et al., 2018),
surprise (Schmidhuber, 1991; Pathak et al., 2017), learning progress (Kaplan & Oudeyer, 2004;
Baranes & Oudeyer, 2013), disagreement (Pathak et al., 2019), or other forms of novelty (Fu et al.,
2017); see François-Lavet et al. (2018) for a recent review. Yet, despite these efforts, the problem of
exploration remains far from solved. Indeed, algorithms which achieve state-of-the-art performance
on benchmarks such as Atari often still rely on simple exploration strategies like ε-greedy combined
with huge amounts of computation (Kapturowski et al., 2018).

As with artificial agents, exploration is a key feature of human behavior. Dating back to Piaget
(1933), developmental researchers have conceived of children as active and curious learners who
are intrinsically motivated to explore the world in systematic and rational ways (Schulz & Bonawitz,
2007; Cook et al., 2011; Legare, 2012; Schulz, 2012; Schulz et al., 2019a); see Schulz (2012) for a
review. The simplest example of this exploration may be in the way that active movement through
space informs both object understanding and navigation. For example, when infants become mobile
and begin to crawl this exploration appears to allow them to learn both about space and objects
(Campos et al., 2000). Even 11-month old infants choose to physically explore objects that vio-
late expectations of object solidity or object support instead of a novel distractor object (Stahl &
Feigenson, 2015). Older children also explore in more complex ways, both when evidence does not
conform to their expectations (Bonawitz et al., 2012; Legare, 2012) and when evidence is causally
confounded (Schulz & Bonawitz, 2007; Schulz et al., 2007; Cook et al., 2011; Schulz, 2012). The
simple fact that children know less than adults may make them more open to new kinds of learning
and exploration (Lucas et al., 2014; Gopnik, 2017). Recent evidence suggests that children do in-
deed explore more than adults, and that this translates into higher amounts of learning, even when
exploration comes at a cost (Liquin & Gopnik, 2019; Schulz et al., 2019b; Sumner et al., 2019;
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Figure 1: (Left) Child using the Arduino-based controller to explore a maze in DeepMind Lab.
(Middle) The maze that the child sees on the screen. (Right) Top-down view of maze layout.

Nussenbaum & Hartley, 2019). Moreover, such learning is rapid and supports powerful, abstract
generalizations (Sim & Xu, 2017; Walker et al., 2020). For example, Sim & Xu (2017) found that in
the course of playing with a toy that was activated by different shaped and colored blocks, preschool-
ers could develop an abstract “overhypothesis” about how the toy functioned, such as determining
whether the blocks worked based on their color or their shape, and use that overhypothesis to make
inferences about a new toy or block.

The generalization and rapid learning resulting from children’s exploration is in stark contrast with
that exhibited by modern RL agents. We suggest that by performing direct, controlled comparisons
between children and agents, we may be able to leverage insights from children’s exploratory be-
havior to improve the design of RL algorithms. Although previous approaches to exploration have
been motivated qualitatively by human behavior (e.g. Pathak et al., 2017), they typically have not
included direct comparisons, making it difficult to know whether such methods actually capture the
behavior they are inspired by. For example, while learning exhibited by children is typically mea-
sured over a handful of trials, the learning done by curious RL agents is measured over millions of
environment steps. Moreover, experiments with children have not been performed in the types of
navigation-centric environments where agents are often trained; we therefore do not know the extent
to which results in the developmental literature even apply to such agents.

Prior work has demonstrated the value of human baselines as a useful comparison for agent behav-
ior in other settings. For example, the baselines on Atari games provided by Mnih et al. (2015)
have been widely influential in RL, providing a point of comparison for hundreds of experiments.
Other work goes beyond using human data as a baseline, for example by using it to illuminate key
differences between human and agent priors (Dubey et al., 2018). However, with a few interesting
exceptions (Bambach et al., 2018; Seita et al., 2019), most existing comparisons have been done
with adults. We argue instead for using children as direct inspiration for research in exploration.
Very young children learn extensively, and, unlike adults, they explore widely, ubiquitously and ef-
fectively with little direct training, explicit education or reflection. In fact, arguably most human
learning takes place in childhood.

Here, we present a methodology based on DeepMind Lab (Beattie et al., 2016) for directly compar-
ing child and agent behavior in simulated exploration tasks, allowing us to precisely test questions
about how children explore, how agents explore, and how and why they differ. Using this methodol-
ogy, we propose two candidate experiments designed to test key qualitative predictions of different
exploration algorithms with respect to what is known about children’s exploration behavior in other
domains. Although we are still collecting data in these experiments, we present some preliminary
analyses which already raise interesting questions, setting the stage for further research to inspire
new approaches to the problem of exploration.

2 DIRECTLY COMPARING CHILDREN AND AGENTS

We propose using DeepMind Lab (Beattie et al., 2016) as a unified environment for training and
evaluating both humans and agents. DeepMind Lab is a learning environment, based on the Quake
game engine, that provides a suite of challenging 3D navigation and puzzle-solving tasks for learning
agents. These tasks require physical or spatial navigation capabilities to achieve and are modeled
after games that children play themselves. In our experimental setup, children are allowed to interact
with the DeepMind Lab environment through a custom Arduino-based controller shown in Figure 1.
This controller exposes the same four actions that agents would use in this environment (move
forward, move back, move left, and turn right). More technical details about the environment are
available in Appendix A.
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DeepMind Lab allows us to place agents and humans on more even footing, enabling a more precise
exploration of the differences in child and agent behavior. In particular, we emphasize that the Lab
environment is more ecologically valid than other standard RL environments, that it enables more
controlled comparisons than are typically seen in the RL literature, and that it provides an avenue
for developing new cognitive models.

Ecological validity. One key reason for gathering data from children and agents in the same en-
vironment is that it forces agents to be evaluated in a more ecologically valid setting, compared to
grid world-like settings or 2D Atari games (Bellemare et al., 2013). DeepMind Lab combines rich
visuals of a simulated world with first-person view, which is much closer to the situated nature of
human experience (and which may play an important role in generalization; see Hill et al. (2019)).
Furthermore, navigating through the mazes in DeepMind lab is sufficiently interesting such that the
human children are captivated by the task.

Controlled comparisons. Comparing children directly to agents provides a standard baseline for the
evaluation of agent behavior, and can assist in identifying areas of promising research in deep RL.
For example, while much of the literature in developmental psychology has focused on free explo-
ration behavior, the majority of work on exploration in artificial intelligence and machine learning
has been for goal-seeking domains. Thus, the quality of an exploration method is typically measured
by how much it improves the learning speed and final performance of an agent on a particular task,
rather than how well it enables this agent to acquire knowledge and generalize to other tasks. While
recent work in meta-learning (e.g. Finn et al., 2017) has begun to expand the metrics that we use
beyond single-task reward to transfer efficiency, such papers often lack a strong baseline for human
performance and behavior.

Cognitive modeling. In addition to allowing for an ecologically valid experimental setting, these
direct comparisons give strong direction in the development of new cognitive models of behavior,
furthering the “virtuous cycle” between cognitive science and AI (Hassabis et al., 2017). Collecting
experimental data from children in the exact environment for which we will test our artificial agents
allows us to directly evaluate learned behavior as well as design challenging test-time environments
to understand the circumstances when the agent behavior and child behavior diverge. These diver-
gences have the ability to shed light on issues in both RL and cognitive sciences: How do RL agents
react to classical pitfalls for humans? How do humans react to the classical pitfalls for artificial
agents? Can we create a unified theory?

3 ILLUSTRATIVE EXPERIMENTS AND RESULTS

Although we are still in the process of collecting and analyzing the data, our preliminary results be-
gin to demonstrate the utility of a direct comparison between children and agents. Both experiments
below have been approved by UC Berkeley’s IRB.

3.1 EXPERIMENT 1: FREE VERSUS GOAL-DIRECTED EXPLORATION

Our first experiment is designed to determine if there are differences in the exploration strategies
of children who are faced with an unknown environment. In this experiment, children explored
the virtual DeepMind Lab mazes using a custom-built child-friendly controller (see Appendix B.1
for full details and maze layouts). They completed two mazes one after another, each with the same
layout. In the first maze, they were told to explore freely (the “no-goal” condition), and in the second
maze they were told to search for a “gummy” (the “goal” condition). Our initial results suggest that
children exhibit a wide range of variability in how much they explore in the no-goal condition, with
“low explorers” only exploring about 22% of the maze, “medium explorers” exploring about 44%,
and “high explorers” exploring up to 71% of the maze. We see a relationship between the level of
exploration in the no-goal condition and the steps taken to find the gummy in the goal condition:
low explorers take the longest amount of time to reach the goal (95 steps on average), and medium
explorers take 89 steps, whereas high explorers take 66 steps on average.

We also find that children’s search strategies between the no-goal and goal condition differ. We
compared children’s behavior to that of a depth-first search (DFS) agent, which pursues an un-
explored path until it reaches a dead-end, at which point it will turn around and explore the last
unexplored path it has seen. More details of this agent, and analysis of the experiment are available
in Appendix B.1. We find that in the no-goal condition, children made choices consistent with DFS
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89.61% of the time compared to the goal condition, in which children made choices consistent with
DFS 96.04% of the time (p = 0.0073).

In combination, the above two results suggest that during the no-goal condition children build a
mental model of the maze, which in “high explorers” is necessarily more complete. During the
goal condition, children are able to leverage this mental model to perform more efficient, DFS-
like search towards the goal. These preliminary results suggest that we can start to understand the
children’s behavior in terms of existing algorithms for search and exploration. In contrast, RL agents
are unlikely to exhibit directed, efficient exploration. Most state-of-the-art approaches for guiding
exploration in RL agents (Sec. 1) depend on the agent first stumbling upon an interesting area by
chance, and then encourage the agent to revisit that area until it is no longer “interesting.” In other
words, RL agents are retrospective, rather than prospective, explorers.

3.2 EXPERIMENT 2: SPARSE VERSUS DENSE REWARDS

RL agents typically learn best using dense reward signals. However, dense rewards make agents less
incentivized to explore, and can thus lead to poor generalization. We are interested in characterizing
to what extent dense rewards can impact the exploration behavior in children. If children are less
susceptible to over-fitting to dense rewards, their behavior could shed light on how to design RL
algorithms with better generalization.

To test this, we developed a second experiment on children aged 4-6, in which children complete
two mazes, each with three phases. In the first phase, the children explore the maze either in a “no-
goal” condition, where there is no goal; a “sparse” condition where a goal exists, but there is no local
reward; or a “dense” condition where a goal and local rewards leading to the goal are present (see
Appendix B.2 for specific experiment details). In the second phase, children are asked to find the
goal again, which is in the same location as during exploration. In the final phase, they are asked to
find the goal, but the optimal route to the goal is blocked. We hypothesize that both children and RL
agents in the “dense” condition will (1) follow the dense-reward path directly to the goal in the first
phase, (2) find the goal faster in the second phase (since they can repeat the previous dense-reward
path), but (3) will take longer to find the goal in the final phase, compared to those in the “sparse”
condition, because the previous dense-reward path to the goal is now blocked. Some RL agents in
the “dense” condition may not find the goal at all in the final phase, if they are unable to switch from
exploitation to exploration when they find that the path is blocked.

While we are still collecting data, initial experimental data suggest that children are less likely to
explore an area in the dense rewards condition, however, surprisingly, that lack of exploration does
not hurt their performance in the final phase.

4 DISCUSSION

Even the most sophisticated methods for exploration in RL tend to explore only in the service of a
specific goal, and are usually driven by error rather than seeking information. We believe that to truly
build intelligent agents, they must do as children do: actively explore their environments, perform
experiments, and gather information to weave together into a rich model of the world, which can
later be used to rapidly perform new tasks. Our proposed paradigm using DeepMind Lab to support
this endeavor by allowing us to identify the areas where agents and children already act similarly and
those in which they do not. Indeed, our preliminary results already suggest qualitative differences
between the exploration behavior of children and agents: for example, we expect that most deep RL
agents will not replicate the DFS-like behavior that we observed in children in Experiment 1.

This work only begins to touch on a number of deep questions regarding how children and agents ex-
plore. The two experiments presented here touch on questions of how much children and agents are
willing to explore; whether free versus goal-directed exploration strategies differ; and how reward
shaping affects exploration. Yet, our setup allows us to ask so many more, and we have concrete
plans to do so. These include: how easily do agents and children get distracted by irrelevant stimuli
or objects in a maze? To what extent can children and agents remember and integrate information
during exploration to aid in future tasks? How do children react to both positive and negative re-
wards, and explore mazes safely? In asking these questions, we will be able to acquire a deeper
understanding of the way that children and agents explore novel environments, and how to close the
gap between them.
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APPENDIX/SUPPLEMENTARY MATERIALS

A DEEPMIND LAB ENVIRONMENT

Observations in the DeepMind Lab environment are rendered at 30FPS (close to human perception),
and actions cause the avatar in the maze to move either forward or back or to turn left or right. These
actions cause the avatar to move 10-15 game units forward/backward in the game space, which
is equivalent to about 1/5th of a cell in Figure 2. As either children or agents can interact with
DeepMind lab, in both cases we record the same type of state, action and trajectory information.
Trajectories are discretized by determining which cell the avatar is in (see Figure 2), and recording
the new state if it is not equivalent to the cell at the previous time step. These trajectories are then
directly compared.

B EXPERIMENTAL DETAILS

B.1 EXPERIMENT 1

Figure 2: (Top) What the child sees when they start each of 3 different parts of the maze game in
DeepMind Lab (Bottom) Top-down view of maze layout for each of the 3 parts of the experiment

Our first experiment is designed to determine if there are differences in the exploration strategies
of children when faced with an unknown environment. In this experiment, children explored the
virtual DeepMind Lab mazes using our child-friendly controller. They completed three mazes one
after another, each with the same over-all layout. In the first maze, they were told to explore freely
(the “no-goal” condition), and in the second maze they were told to search for a “gummy” (the
“goal” condition). and (c) search for the gummy when the most direct path to the goal is blocked.
This “blocked” condition design is directly inspired by Tolman mazes (Tolman, 1946) designed for
rats, which demonstrate the ability to re-orient themselves to find a reward in a blocked condition.
For this experiment, we pre-registered a sample size of 50 children aged 4-5.

Our initial results suggest that children exhibit a wide range of variability in how much they ex-
plore in the no-goal condition, using K-means we break the children into 3 types of explorers (low,
medium and high) based on how much they explored in the first “no goal” part. “Low explorers”
only explored about 22% of the maze, “medium explorers” explored about 44%, and “high explor-
ers” explored up to 71% of the maze. Low explorers take about 94.89 steps on average to reach the
goal, medium explorers take 89.4 steps and high explorers take about 66.01 steps. This suggests that
naturally exploring more in Part A (without prompts) helps you find the goal in Part B. We do not
find any correlations between explorer type and steps taken to reach the goal in Part C in the blocked
condition, but plan to explore this further.
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Figure 3: (Left) Maze outlines for No apples or “sparse reward” condition. (Right) Maze outlines
for Apples or “dense reward” condition

Comparison to Depth First Search: Depth first search is a systematic search algorithm which
operates by greedily traversing a path until no further traversal can be made. It then backtracks to
the most recent branching point which has unexplored branches, and then explores down a new,
unexplored branch.

In addition to the metrics mentioned above, we also compute what we call “Consistency” between a
child’s behavior and the depth first search algorithm. This metric stands in as a proxy for systematic
behavior: and attempts to examine if children explore in systematic ways in a maze. Indeed, depth
first search is an extremely efficient way to locally explore a maze (unlike breadth first search, which
hops around the open list, and would be difficult for a child to replicate). To compute this metric,
we begin by discretizing the space of the maze into cells, and computing the trajectory for the
child based on the order of cells visited. For a child’s trajectory, a step in the child’s trajectory is
“consistent” with the depth first search algorithm if:

1. The child does not visit a state they have previously visited UNLESS there are are no
adjacent un-visited neighbors.

2. if all neighboring states have been visited, the child moves in the direction of the most
recent unexplored branch.

Measuring consistency across a child’s entire trajectory would lead to large numbers of consistent
states (as they traverse down long corridors), making it difficult to measure the actual behavioral
differences of the children and the agents. To avoid this confound, we restrict our analyses to
“decision points” in the maze, that is cells that do not have two neighboring cells. The code for
this analysis is made available at https://github.com/CannyLab/ExpExp. Comparisons
to other local search algorithms such as jump-point search are also an interesting avenue for future
work.

B.2 EXPERIMENT 2

In our second pilot experiment, we pre-registered a sample size of 60 children aged 4-6. Designed
to examine the impact of a dense versus sparse reward structure on the exploration patterns of both
children and agents.

This task contains 6 parts. Children complete two mazes, each with three phases. There are 2
conditions. The “dense rewards” or “apples” condition has children following a path of apples in the
maze which leads them to the goal. These apples are taken away in the subsequent maze but the goal
remains in the same place, children have to find the goal without the aid of the apples. They then
have to find the goal in a maze where the main path to the goal is now blocked from the start. In the
“sparse reward” or “no apples” condition, children freely explore a maze that has no goal present.
They are then asked to look for a goal in the subsequent maze. They then have to find the goal in a
maze where the main path to the goal is now blocked from the start. For both conditions the same
tasks are repeated in a new maze design to test for generalization. Figure 3 outlines what the maze
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outlines look like. We will measure percent of maze explored for each part, number of steps taken,
cells crossed, time to reach goal and percent of maze re-explored in each section.

We expect that, in line with state-of-the-art RL agents, children in the “dense” condition will (1)
follow the dense-reward path directly to the goal in the first phase, (2) find the goal faster in the
second phase (since they can repeat the previous dense-reward path), but (3) will take longer to find
the goal in the final phase, compared to children in the “sparse” condition, because the previous
dense-reward path to the goal is now blocked. While we are still collecting data, initial experimental
data suggest that children are less likely to explore an area in the dense rewards condition, but,
surprisingly, that does not hurt their performance in the final phase.

While we do not know why the lack of exploration does not hurt their performance in the final phase,
this shows experiment shows us why its useful to study children, their behavior here is surprising,
and certainly an instance where agents behavior differs from children.
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