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ABSTRACT

Memory in humans and artificial intelligence (AI) systems has similar functions—
both are responsible for encoding, retrieving, and storing of information. While
memory in humans has specialized systems for different functions (e.g., working
memory, semantic memory, episodic memory), memory in AI systems is often
implicitly represented in the weights of parametric neural networks. Focusing on
language processing systems, we argue that this property makes it hard for AI
systems to generalize across complex linguistic tasks. We consider the separation
of computation and storage as necessary, suggest desired properties of the storage
system, and discuss the benefit of integrating different types of human memory
(as separate modules) into next-generation language processing systems.

1 INTRODUCTION

The uniquely human ability to acquire, comprehend, and produce language is highly dependent on
our memory: it stores our knowledge of various aspects of language and enables us to follow a
conversation (Carroll, 2007). We can broadly categorize human memory processes into two cate-
gories: computation corresponding to encoding and retrieval of information and storage responsible
for maintaining information over time. Interestingly, human memory consists of specialized systems
for different functions; e.g., the episodic memory is responsible for the memory of personal experi-
ences and events, the semantic memory stores information about a language sound system, and the
working memory is involved when comprehending sentences. Moreover, the storage of information
in human memory is imperfect—we forget as we learn.

Similarly, AI systems require processes for both computation and storage of information. Although
previous work has explored separating computation and storage (e.g., Graves et al., 2014; Weston
et al., 2015; Sprechmann et al., 2018), the dominant approach focuses on building large neural mod-
els where both computation and storage are modeled implicitly in model parameters (i.e., neural
network weights). Such an AI system optimizes an objective function for a specific task to deter-
mine what to encode (write into memory) and requires additional supervision to retrieve knowledge
(Bosselut et al., 2019), which limits their ability to generalize to new tasks.

We argue that achieving human-like linguistic behavior requires models that consider computation
and storage as separate processes. Furthermore, the storage should be a dynamic module that is
structured to facilitate faster search and is capable of managing its size complexity by forgetting or
compressing (abstracting away). We consider such a modular design to be a necessary structural
bias and a more viable alternative to training an ever larger neural network.

In addition, none of the existing work implements an integrated model of specialized memory sys-
tems that are involved in human language processing (e.g., working memory, semantic memory,
episodic memory). We conjecture that language processing models should incorporate different
memory systems with specific functions as independent modules. An intuitive reason is that it is
simpler to train a memory module to perform one function (e.g., store events) as opposed to training
an end-to-end model that needs to decide what functions are needed to perform given a task.
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Memory Functions in human
language processing AI tasks AI models

Episodic
memory

Tracking verbs, events,
and ongoing discourse

Story comprehension,
discourse analysis, event
detection

GEM, A-GEM,
MbPA, MbPA++,
Matching Networks

Semantic
memory

Storing words, sounds,
and pragmatic aspects
of language

Knowledge base
construction, open-domain
question answering,
common sense reasoning

NELL, LSC,
Progress & Compress

Working
memory

Sentence comprehension,
understanding references
to pronouns

Reading comprehension,
coreference resolution,
word sense disambiguation,
entity linking, parsing

LSTM, DNC,
Memory Networks

Table 1: Memory types, their function in human language processing, AI tasks where such func-
tions might be necessary, and AI models that implement analogous functions. Model references
(left to right, top to bottom): Lopez-Paz & Ranzato (2017); Chaudhry et al. (2019); Sprechmann
et al. (2018); Masson et al. (2019); Vinyals et al. (2016); Mitchell et al. (2015); Chen et al. (2015);
Schwarz et al. (2018); Hochreiter & Schmidhuber (1997); Graves et al. (2014); Weston et al. (2015).

In general, we believe that focusing on improving memory in AI systems is timely since it mostly
relies on algorithmic advances—compared to the hardware or data requirements that impede making
progress in language grounding, interactions, and others.

2 HUMAN MEMORY

Before the 1970s, experimental research primarily considered memory as a unified system with
a single function. However, recent neuroscience research shows that the human brain consists of
memory systems with distinct functions: One brain pathway encodes our personal experience and
another one keeps our knowledge of words (for a review, see Eichenbaum, 2012). Here, we focus
on memory systems that are highly involved in language acquisition and processing, i.e., declarative
and working memory.

Declarative memory is long-term and consists of two different memory systems of knowledge and
personal experience: (1) Semantic memory refers to our knowledge of facts. For example, our
knowledge of sounds, words, and concepts is encoded in semantic memory. (2) Episodic memory
encodes our individual experiences of the world and gives us the capacity to replay such experiences
and imagine future ones. Moreover, the episodic memory stores information about when, where, and
in which order events occur. Finally, while the hippocampus is responsible for forming declarative
memories, long-term memories are not stored in the hippocampus (Rolls, 2000).

Working memory is the temporary storage used for processing information (e.g., Baddeley, 1986).
For example, to follow a conversation, we need to store some information about what our conversa-
tion partner has shared.

Forgetting is a crucial aspect of human memory; paradoxically, not remembering everything we
encounter facilitates the learning and retrieval of information (Bjork, 1994). For example, forgetting
enables us to form abstractions—knowing what a cat is without needing to remember the details of
all cats we have seen (Vlach et al., 2008).

3 MEMORY IN AI

State-of-the-art AI models (i.e., neural networks) work well on a single dataset, but they often strug-
gle with long-term dependencies and fail to reuse previously acquired knowledge. A main approach
to mitigate this problem is to augment neural networks with a memory module. However, the term
“memory” itself is used with multiple different interpretations. We classify memory-augmented
neural networks into two broad categories based on their connections to the human memory system
and summarize how each model implements the read and write mechanisms for its memory mod-
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ule. Table 1 lists examples of human memory functions, AI tasks that require similar memory, and
models that implement similar memory modules.

Models with declarative memory. Episodic memory models have been largely used to prevent
catastrophic forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990) in a lifelong learning setup on
multiple tasks. The episodic memory module is a key-value module that stores (a subset of) training
examples from each task that have been seen by the model. In lifelong language learning, the key is
typically a learned vector representation of the example and the value is its original representation
(e.g., a string for a natural language example). The strategy to select which examples to write into
the memory is often simple (e.g., the last N examples seen for a task, random decision whether
to write or not), and more sophisticated methods seem to not perform as well due to a coverage
issue (i.e., the need to ensure the distribution of stored examples is representative of the distribution
of true examples; Isele & Cosgun 2018; Masson et al. 2019). The episodic memory is used to
either constraint the gradient updates (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019), locally
adapt the base model to a new test example (Vinyals et al., 2016; Sprechmann et al., 2018), or for
experience replay (Wang et al., 2019; Masson et al., 2019).

Semantic memory is often represented as knowledge bases in artificial intelligence. Work on using
knowledge bases to improve AI systems has progressed from the early decades of AI with the design
of rule-based expert systems (Jackson, 1990) to the modern era prior to the deep learning revolution
(Banko & Etzioni, 2007; Mitchell et al., 2015). A knowledge base is seen as a component of many
lifelong learning algorithms (Chen et al., 2015), some of which represent it with a neural network
(Rusu et al., 2016; Kaiser et al., 2017; Schwarz et al., 2018). In addition, many researchers (Mikolov
et al., 2013b; Kulkarni et al., 2015; Hamilton et al., 2016) have remarked upon the ability of word
embeddings (Mikolov et al., 2013a) to represent concepts and their relations, which resemble infor-
mation stored in a semantic memory.

Models with working memory. We consider a model to be augmented with a working memory
mechanism if the memory module is mainly used to store local context (e.g., a conversation thread in
a dialog system, an article context in language modeling). A classic model is the Long Short-Term
Memory (LSTM; Hochreiter & Schmidhuber, 1997) unit, which has been a driving force behind
advances in sequence modeling (including language processing). An LSTM network has a memory
cell (i.e., a vector) that is modulated by three gates: input, forget, and output. These gates regulate
what is written and read from the memory cell, and the entire network is trained end to end on a
particular task. This memory cell serves as a working memory to store information across multiple
timesteps when processing a sequence.

Another influential model is the Differentiable Neural Computer (DNC; Graves et al., 2014), which
augments a neural network with a memory module in the form of an external memory matrix. Ac-
cess to the memory is regulated by a neural network controller. The controller has three main types
of heads that are implemented as differentiable attentions: content lookup (read head), memory al-
location (write head), and an extra head that tracks transitions between written memory locations
(temporal transition head). These heads have been suggested to operate in a way similar to the hip-
pocampus (e.g., fast memory modification, sparse weightings to increase representational capacity,
the formation of temporal links). DNC works well on a toy question answering task that requires rea-
soning across multiple sentences. Many other related variants of DNC are used in natural language
processing, e.g., Memory Networks (Weston et al., 2015; Sukhbaatar et al., 2015), stack-augmented
neural networks (Joulin & Mikolov, 2015; Grefenstette et al., 2015; Yogatama et al., 2018), and
cache-based sequence models (Graves et al., 2014; Merity et al., 2017; Khandelwal et al., 2020).
Nevertheless, learning to use the controller remains a challenging task and is currently outperformed
by simply writing at uniformly spaced intervals (Le et al., 2019).

Forgetting. Catastrophic forgetting—where a model performs poorly on examples from a dataset
that is encountered in a distant past (after seeing multiple other datasets)—is a common problem
in AI systems (Yogatama et al., 2019; Greco et al., 2019). On the other hand, the ability to forget
is a crucial part of the human memory system. A recent study shows that there exist forgettable
examples—defined as examples that transition from being predicted correctly to incorrectly—when
training a model on a particular dataset (Toneva et al., 2019). Moreover, identifying such forgettable
examples appears key to train a model that efficiently generalizes with fewer examples.
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4 THE GAP BETWEEN HUMAN MEMORY AND AI

In this section, we discuss how we might bridge the gap between human memory systems and
memory-augmented neural networks as a possible way to improve AI models. We focus on models
of computation and storage as well as improvements to core operations in the memory.

As discussed in §1, a recent line of research (Devlin et al., 2019; Radford et al., 2019) suggests that
increasing the number of parameters in a neural network is sufficient for improving AI systems and
an explicit memory module is not needed. In these models, the computation and storage systems are
fundamentally intertwined as neural network parameters (weights). It has been shown that relatively
low-level knowledge (e.g., word similarity)—which would be stored in a semantic memory—can
be extracted from these models in an unsupervised way (Petroni et al., 2019; Bouraoui et al., 2020).
However, the extraction of more complex ones (e.g., common sense) requires explicit supervision
(Bosselut et al., 2019), which indicates a limitation of such a model.

In contrast to the above approach, we believe that the separation of computation and storage is
necessary to incorporate structural bias into AI systems. In memory-augmented neural networks
(§3), the separation between computation and storage enables the computation module to focus on
processing examples and the storage module to focus on learning to represent a persistent storage
efficiently. Lillicrap & Santoro (2019) argue that a modular treatment of computation and storage
is also useful from an optimization perspective—particularly for long-term credit assignments—
to propagate gradient information from the present with high fidelity. Separating neural network
components based on their functions has been found useful in other contexts, e.g., for attention with
a query, key, and value component (Daniluk et al., 2017). In this position paper, we make no claim
about the form of the storage module. For example, it is possible to implement it as a neural network
such as in recent work (Schwarz et al., 2018) to facilitate efficient compression of information.

The three main operations that are introduced by the separation of computation and storage are
encoding (writing), retrieval (reading and searching), and storing (compression and forgetting). We
argue that the storage system should be implemented as a module that has a structured space to
facilitate faster search, similar to human memory retrieval. Furthermore, the storage needs to be able
to dynamically manage its size complexity by forgetting or compressing to form abstractions.
Compression is needed from a practical standpoint, since it is unrealistic to have a neural network
that keeps growing in its storage size. Forgetting with an explicit memory module may also enable
fine-grained control of what is stored, which is important for privacy purposes (Carlini et al., 2019).
Moreover, our environment imposes a specific schedule on what we observe and what we can learn.
The interaction of this schedule and our memory not only prevents the notion of catastrophic forget-
ting, but also improves our learning and retrieval of information (Anderson & Milson, 1989; Bjork,
1994). Automatically discovering a task-independent schedule (e.g., via meta learning, curriculum
learning) could be important to mitigate catastrophic forgetting in AI systems.

Finally, existing systems only implement a particular type of human memory systems—either a
working memory module to capture long-term dependencies or a declarative memory module to
remember facts or examples of a given task. It has been argued that intelligent behaviors rely on
multiple memory systems (Tulving, 1985; Rolls, 2000). Next generation models should seek to
integrate different memory types (as separate modules) in a single language processing model
with functions that closely resemble memory in human language processing. We see this integration
to be crucial for an AI system to be able to combine information from a long-term local context
(e.g., in a Wikipedia article) and persistent global context (e.g., other Wikipedia articles). Such an
integration is needed for tasks such as answering factual questions, conversing about a particular
topic, and others.

5 CONCLUSION

We considered similarities and differences of memory implementations in human and artificial lan-
guage processing systems. We argued for the separation of computation and storage and suggested
necessary properties of the storage system in the form of a structured space and the ability to forget
and compress (form abstractions). We conjectured that next-generation language processing sys-
tems would integrate different types of memory as separate modules with functions that resemble
memory in human language processing.
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