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ABSTRACT

What is the representational structure of mouse visual cortex and how is it shaped?
Mice obviously interact with the world and recognize objects but unlike in primates
the activity of their visual cortex is not well described by modern object-recognizing
deep neural networks. Using a two-photon calcium-imaging dataset of the activity
in more than thirty thousand neurons in mouse visual cortex recorded in response to
a stimulus set of natural scenes (the Allen Brain Observatory Visual Coding dataset),
we make a preliminary attempt to clarify the relative contributions of model task
and architecture in characterizing the representational structure of rodent vision.
Our method consists of comparing the neural recordings from the mouse brain
to the responses of over 50 different networks: the same architecture of network
trained individually on 21 different computer visual tasks in the Taskonomy project,
and 30 different architectures all trained on the same task (object recognition)
in the PyTorch model zoo. We also try and isolate which tasks are performed
where, creating what we call "taskonomic signatures’ of different neural sites as
an exploratory metric of functional specificity across mouse visual cortex. Object
recognition does appear to be important — the best performing object recognizer in
the PyTorch zoo is one of the most predictive models overall (and far outperforms
a randomly initialized counterpart). At the same time, non-semantic tasks such as
2D segmentation also seem significant. This work suggests an avenue to discover
critical visual tasks which may heretofore have been overlooked by computer vision
and neuroscience alike, and constitutes a first step towards establishing the overall
task-related (rather than purely anatomical) structure of the visual brain. A better
understanding of mouse visual cortex, given the availability of data unmatched
in quality and resolution compared to what can be recorded from primates, may
provide new insights into fine-grained recognition and scene understanding beyond
those which define even our most capable machines. Novel combinations of
task and architecture inspired by this neural data may in turn help to explain the
conspicuously large amount of reliable neural variance left unexplained by even
the most predictive models we catalogue here.

1 INTRODUCTION

To date, the most successful models of biological visual cortex are the object-recognizing deep neural
networks the modeling community have applied to the prediction of primate visual cortex — networks
that are powerful enough even to act as generators for synthesizing stimuli that drive neural activity
beyond its typical range (Bashivan et al. (2019); see also Appendix). Their success in the modeling
of rodent visual cortex, however, has been a bit more meted. It appears that the types of features best
matched from the feature spaces of rodent visual cortex are those extracted from the deeper layers
of modern deep nets — a matching that contrasts the traditional schematic wherein “simple” and
“complex” cells are best modeled by early convolutional and pooling layers (Shi et al., 2019). Some
have even suggested that randomly initialized networks provide about as predictive a set of features
as task-optimized neural networks, while still outperforming hand-engineered features (Cadena et al.,
2019). Here, we re-examine the state of neural network modeling in rodent visual cortex, a survey we
summarize in three findings: 1) that some sort of training (versus random initialization alone) is vital
to the predictive power of a given neural network’s features; 2) that different areas of mouse visual
cortex are perhaps best described by different tasks; and 3) that even the most predictive models we
test leave unexplained a vast majority of the variance in measurements from rodent visual cortex.
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2 METHODS

2.1 DATASET

As our animal reference, we use the Allen Brain Observatory Visual Coding dataset (de Vries et al.,
2020), a two-photon calcium-imaging dataset consisting of approximately 65,000 neurons collected
from across the visual cortex of 221 awake, adult mice. The neurons sampled include 6 areas of
visual cortex and 4 cortical layers — though some combinations of area and layer are absent from
the assays. The sampled combinations of cortical area and layer constitute a total of 21 distinct
neural sites. For the purposes of this analysis, we limit our dataset to the neural activity measured
in response to a set of 118 natural images. Each of these images is displayed exactly 50 times over
the course of an assay. To ensure a sufficient amount of signal, we whittle down our selection of
neurons to include only those neurons with split-half reliability of 0.75 and above (the split halves in
this case being constituted of 25 of the 50 presentations for each image). This conservative threshold
still leaves over 8200 neurons for analysis and supports the construction of target representational
dissimilarity matrices (RDMs) with split-half reliabilities as high as 0.93.

2.2 MODEL ZOOLOGY

To explore the influence of model architecture on predictive performance, we use 30 model architec-
tures from the PyTorch Model Zoo, a collection of empirically established architectures pretrained on
the ImageNet image classification challenge. For each model, we extract features from one pretrained
and one randomly initialized version, creating RDMs at each layer of each architecture with the
same 118 natural images used in the Allen Brain Observatory assays. In what is perhaps a significant
limitation, all the modern object detection models available from the PyTorch zoo are feed-forward
architectures. We establish a hierarchy of models in terms of their average predictive power across all
neural sites assayed, though we note the overall hierarchy occasionally differs by neural site.

2.3 NEURAL TASKONOMY

In addition to the 30 model architectures from the PyTorch model zoo, we extract features from a
single architecture trained on 21 different computer vision tasks in a project called Taskonomy (Zamir
et al., 2018). Key to the engineering of Taskonomy is the use of an encoder-decoder architecture in
which only the construction of the decoder varies across task. The encoder terminates in a latent space
of 1024 dimensions, described by the authors as containing the most abstract, titrated representations
specific to each task before those representations are transformed again for readout. Following recent,
similar analyses on human visual cortex (Wang et al., 2019), we initially focus on RDMs constructed
from this latent space before expanding our analysis to include representations extracted from all
layers of the encoder. In the interest of clarity, we cluster the 21 tasks according to their ‘taskonomic’
category — a total of 5 clusters (2D, 3D, semantic, geometric or miscellaneous). These purely
data-driven clusters are derived from how effectively a set of features learned for one task transfer to
(or boost the performance in) another task.

2.4 COMPARISON TO NEURAL DATA

To compare the representational spaces extracted from the assembled deep neural network models
with those of mouse visual cortex, we use a combination of RDMs and a cross-validated nonnegative
least squares (NNLS) regression (Jozwik et al., 2016). For any given comparison, the regressors are
all the RDMs extracted from a given model (one per layer); the regressand is the RDM computed
from the neural activity of a given cortical area and layer (a neural site). For the purposes of cross-
validation, we subdivide the RDMs with a k-fold, fitting the regression on k — 1 folds, then predicting
the held-out fold, eventually constructing an RDM entirely of heldout predictions. We then correlate
this predicted RDM with the RDM from the brain to obtain our similarity score.

2.5 TASKONOMIC SIGNATURES

To better resolve the relationship of task category to neural site — with the hypothesis that different
neural sites may be best predicted by different tasks — we perform a series of ANOVAs. Noting that
Bonferroni corrections in the post-hoc tests often leave us underpowered to find significant differences
across the various combinations of neural site and task category, we supplement our comparisons
with an analysis of the weights from a modified NNLS regression, simultaneously passing multiple
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models at a time as regressors and analyzing across 1000 random k-fold splits whether the regression
assigns higher or lower weights to these different models when predicting different neural sites.

3 RESULTS

3.1 MODEL ZOOLOGY

In contrast to previous findings suggesting that randomly initialized models provide as predictive
a feature space as pretrained models, we find that 28 out of 30 ImageNet-pretrained architectures
outperform their randomly initialized counterparts (15 significantly so; 6 with Bonferroni correction
for multiple comparisons). The best performing architecture overall (significantly different from
its randomly initialized counterpart) was an ImageNet-pretrained MobileNetv2 architecture with
R? = 0.1164). The next best architectures were two ImageNet-pretrained SqueezeNet architectures
with mean R? = 0.1162 and R? = 0.109, respectively. The worst performing ImageNet-pretrained
architecture was a batch-normed VGG19 architecture with mean R? = 0.032. The worst performing
architecture overall was exactly the inverse of the best performing model: randomly initialized
MobileNetv2 resulting in a mean R? = 0.011. For the full hierarchy, see Figure 2 in Appendix A.1.

In addition to establishing the hierarchy of architectures, we tested two hypotheses regarding the
composition of the hierarchy (limiting ourselves for now to the pretrained models): the first, inspired
by the superlative performance of the MobileNet and SqueezeNet architectures (all designed to
maximize the tradeoff between task accuracy and total number of trainable parameters) was whether
there was a relationship between predictive performance and parameter count. A Pearson correlation
suggests a slight, marginally significant negative relationship (r = —0.346, p = 0.061) — such that
as total parameter count increases, average predictive performance (slightly) decreases. The second
hypothesis we tested was whether there was a relationship between predictive performance and model
depth (the total number of layers in a given architecture). Here, the Pearson correlation suggests a
slight, but ultimately insignificant positive relationship (r = 0.05, p = 0.783).

3.2 NEURAL TASKONOMY

The most predictive single task from the latent space of the Taskonomy encoder was 2D segmentation
with mean R? = 0.046; the least predictive task was room layout (orientation and aspect ratio of the
cubic room layout) with mean R? = 0.000065. The most predictive single task across all layers of
the Taskonomy encoder was again 2D segmentation with mean R? = 0.092. The least predictive
single task across all layers was neural inpainting with mean R? = .022. For the full hierarchy, see
Figure 3 in Appendix A.2.

3.3 TASKONOMIC SIGNATURES

In a two-way ANOVA examining the effects of task category (a data-driven cluster of tasks) and
cortical area on representational similarity (limiting our analysis first to the latent space of the
Taskonomy encoder), we find a significant main effect of task category (p < 10~'1, > = 0.13) and a
marginally significant interaction (p = 0.056, n?> = 0.07). Expanding our analysis to all layers of the
Taskonomy encoder, we partially recapitulate the same pattern of results, finding again a significant
main effect of task category (p < 107%, n? = 0.054), but without a significant interaction of task
category and neural site. Figure 1 provides an example of one of the taskonomic signatures that may
be driving the interaction effect in the latent space of the Taskonomy encoder. (For the full set of
signatures from which this example was extracted, see Figure 4 in Appendix A.3.)

As caveat to any conclusion drawn from such an example, we note that many of the taskonomic
signatures derived in the latent space — including the example in Figure 1 — are absent when taking
into account all layers, a similar trend to that we saw in terms of overall predictive performance.
Just as the difference between the best and worst performing tasks is reduced from a roughly 7500%
difference (0.046 — 0.00061) to a roughly 350% difference (0.92 — 0.022), so too are many of the
differences that drive the taskonomic signatures in the latent space rendered trivial across all layers.
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Figure 1: A representative example of a ‘taskonomic’ signature (a task-driven dissociation) between
two cortical areas (VISp and VISI) and two clusters of task (2D and Semantic tasks). 2D tasks include
2D edge-detection and 2D segmentation; Semantic tasks include object classification and semantic
segmentation. A is the dissociation in terms of variance explained. B is the dissociation in terms
of relative weights in a combined nonlinear least squares regression analysis repeated across 1000
random 6-fold splits, where all task RDMs are used simultaneously as predictors and weights are
assigned according to how well each feature space contributes to the overall prediction of neural
data. The similarity of the pattern verifies the interaction in the absence of a statistically significant
difference in terms of R? alone, and holds for 93.9% of random splits. Error bars in A are 95%
confidence intervals of the mean R? across the four cortical layers. Error bars in B are permuted 95%
confidence intervals from the cross-validation procedure.

3.4 OVERALL PERFORMANCE

The overall best performance of any single model in any single neural site was Taskonomy’s 2DSeg-
mentation in cortical layer 4 of area VISal, with R? = 0.281. This constitutes approximately a third
of the total explainable variance in this site (its split-half reliability), with mean R? = .789.

4 DISCUSSION

The results we have presented here are perhaps best interpreted as a preliminary sampler of the
possibility space for the modeling of rodent visual cortex with off-the-shelf neural network models,
or perhaps as a menu for new combinations of architecture and task that might thusfar have been
neglected. Most promising in this domain seems to be the use of smaller, more computationally
efficient networks combined with training on early and intermediate feature detection tasks for the
modeling of brains in which vision is less central to behavior, and organizing principles like hierarchy
are absent. The primary visual systems of mice may in the end be more akin to the peripheral visual
systems of monkeys; mice lack a fovea, have a retina dominated by rods for vision under low light,
and spatial acuity bordering on 20/2000 (Huberman & Niell, 2011). It is possible that mice rely
on vision as a sort of broad bandpass filter for lower-frequency, dynamic stimuli that the mouse
can then flee, fight or further investigate with its whiskers — perhaps its most sophisticated sensory
organ. Indeed, the hierarchies seen in primate visual cortex may be better recapitulated in the rodent
trigeminal system, where information from whisking is processed to remarkable depth (Zhuang
et al., 2017). Combining task-optimized neural networks with the unparalleled access, resolution,
and control afforded by rodent neuroimaging could put object recognition in context relative to the
broader scene understanding of which it is a subcomponent or to other ethologically relevant tasks
that drive the organization of the perceptual brain. An accounting of the full range of tasks carried out
in scene understanding, the temporal and causal relationships between tasks, and how information is
integrated from other senses could provide an invaluable roadmap for computer vision. (See Merel
et al. (2019) for a promising example of this in the domain of embodied control).

In addition to a better understanding of vision as a whole, developing models which account for
the relatively massive amount of unexplained variance our models leave in mouse visual cortex
could help discover new organizing principles for all perceptual tasks. Clearly convolution and
depth alone are not enough, at least not when applied to many tasks considered central to vision.
Further innovations (perhaps the same that could solve fundamental computer vision problems like
the learning of invariance to 3D rotations) will be necessary to more fully model the rich diversity
and fiendish complexity of biological brains at scale — even the very smallest ones.
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A APPENDIX

A.1 HIERARCHY OF NEURAL ARCHITECTURES
See Figure 2.
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Figure 2: The full hierarchy of performance in terms of architecture. Error bars are the 95% confidence
intervals when taking the mean predictive performance across cortical area and layer.

A.2 HIERARCHY OF TASKONOMY FEATURES

See Figure 3.

A.3 TASKONOMIC SIGNATURES BY CORTICAL AREA

See Figure 4.

A.4 COMPARISON TO OTHER METHODS FOR BENCHMARKING MODELS OF BRAIN DATA

A variety of methods exist for comparing the responses of deep neural networks to neural responses
recorded from brain tissue. The predominant — but by no means the only — methods might roughly
be divided into two categories: regression and representational similarity analysis. Some of the first
brain-to-network comparisons availed themselves of both; Yamins et al. (2014) citing Carandini et al.
(2005) and Kriegeskorte et al. (2008) used linear regression for mapping responses in individual
neural sites and representational similarity analysis for populations. Other seminal work comparing
deep nets to primate visual cortex pioneered distinctive variants of these approaches. Giiclii & van
Gerven (2017) employed regression in the form of encoding models to assess the hierarchical corre-
spondence between earlier and later layers of processing across brain and machine. Khaligh-Razavi
& Kriegeskorte (2014) built representational dissimilarity matrices by “remixing” and “reweighting”
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Figure 3: The full hierarchy of performance in terms of task. On the left are the predictions from
only the latent space of the taskonomy encoder. On the right are the predictions leverage all layers in
the taskonomy encoder. Error bars are the 95% confidence intervals when taking the mean predictive

performance across cortical area and layer.
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Figure 4: The full range of taskonomic signatures in the comparison of taskonomy’s latent space
with cortical area. The black arrows demarcate the data used in the example of the dissociation
between areas VISI and VISp in the main body of the analysis (see Figure 1). Error bars are the 95%
confidence intervals when taking the mean predictive performance across each cortical layer.

model features according to their performance in a support vector machine classifier trained on
major categorical divisions in the stimulus set. A possible third strain of methods that doesn’t fit so
neatly into the binary of regression versus representational similarity are canonical correlation and
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alignment methods. These techniques leverage what is often assumed to be an underlying latent space
of similarity shared across divergent high-dimensional datasets to assess (via projection) the shared
variance between them. Canonical correlation and alignment methods are popular in both the machine
learning (Morcos et al., 2018; Kornblith et al., 2019) and neuroimaging communities (Bilenko &
Gallant, 2016), but have so far been applied mostly to comparison within, rather than across, domains
and neural substrates. In the context specifically of comparisons to rodent neurophysiology, Cadena
et al. (2019) use a modified regression analysis, predicting spike rate with a core feature model
(VGG16) in tandem with a “shifter” network and “modular” network that correct for extraneous
influences on recorded brain activity (including eye movements and running speed). The relative
advantages of these various approaches as they pertain to characterizing the representational structure
of biological brains is largely uncertain, with a comprehensive comparison of techniques on the same
dataset seemingly absent from the literature.

The current standard for high-throughput benchmarking of neural data on neural models is perhaps
that of Schrimpf et al. (2018) in BrainScore, a method that consists of a partial least squares (PLS)
regression fit individually to each neural site (in their case, a cluster of neurons around a given
electrode in a microarray), wherein the regressand is the responses from that site and the regressors
are the principal components of a target model’s feature space. The end product of this process is
a reliability-corrected R? quantifying how much of the “explainable” variance in a given neural
site is captured by a given model. While thorough in its granularity and extensive in its coverage,
this combination of principal components analysis and partial least squares regression tends to be
a computationally expensive process — often prohibitively so in the absence of cloud and cluster
computing. Our method in this paper — a compromise that combines both penalized regression and
representational similarity — trades some granularity of prediction for computational traction. This
tradeoff was especially necessary in the context of working with optical physiology (calcium imaging)
data, which provides a quantity of neural sites (individual neurons) at least an order of magnitude
larger than the quantity provided by the electrophysiology that predominates in primate neuroimaging.
In future work, we plan to more directly mirror the methods of Schrimpf et al. (2018) in BrainScore.

A.5 ON DIVERGENT RESULTS WITH VGG16

Recent work has suggested that randomly initialized VGG16 provides as predictive a set of features
as VGG16 pretrained on ImageNet (Cadena et al., 2019). In the hierarchy we produce, on the other
hand, Imagenet-pretrained VGG16 strongly and significantly outperforms its randomly-initialized
counterpart (with mean R? = .079 and 009, respectively). While the differences in methodology
and dataset make a direct comparison of these results infeasible, one nuance in our data suggests
a possible point of reconciliation. In addition to the standard VGG16 described in Simonyan &
Zisserman (2014) (the same reference supplied by Cadena et al. (2019)), our catalogue includes a
VGG16 with batch normalization. While batch normalization seemingly decreases the predictive
accuracy of the network overall, it also eliminates the difference in predictive power between the
Imagenet-pretrained and randomly initialized versions (with mean R? = .027 and .033, respectively).
While it does seems that Cadena et al. (2019) used the standard VGG16 based on their reference, if
in fact they used the version with batch normalization, this may explain the discrepancy between
our results and theirs, with the relative predictive parity across pretrained and randomly initialized
models only true in the case of batch-normalized VGG16. It is unclear at this time whether the effect
of batch normalization is simply some artifact of the modeling process or is conceptually relevant
to the neuroscience, but it is an effect worth considering, and another example of how multimodel
comparisons might highlight idiosyncrasies of direct relevance to prediction.
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