
Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

PRODUCT KANERVA MACHINES:
FACTORIZED BAYESIAN MEMORY

Adam H. Marblestone*, Yan Wu∗& Greg Wayne
Google DeepMind
London, N1C 4AG, UK
{amarbles,yanwu,gregwayne}@google.com

ABSTRACT

An ideal cognitively-inspired memory system would compress and organize in-
coming items. The Kanerva Machine (Wu et al., 2018b;a) is a Bayesian model that
naturally implements online memory compression. However, the organization of
the Kanerva Machine is limited by its use of a single Gaussian random matrix
for storage. Here we introduce the Product Kanerva Machine, which dynamically
combines many smaller Kanerva Machines. Its hierarchical structure provides a
principled way to abstract invariant features and gives scaling and capacity advan-
tages over single Kanerva Machines. We show that it can exhibit unsupervised
clustering, find sparse and combinatorial allocation patterns, and discover spatial
tunings that approximately factorize simple images by object.

1 INTRODUCTION

Neural networks may use external memories to flexibly store and access information, bind vari-
ables, and learn online without gradient-based parameter updates (Fortunato et al., 2019; Graves
et al., 2016; Wayne et al., 2018; Sukhbaatar et al., 2015; Banino et al., 2020; Bartunov et al., 2019;
Munkhdalai et al., 2019). Design principles for such memories are not yet fully understood.

The most common external memory is slot-based. It takes the form of a matrix M with columns
considered as individual slots. To read from a slot memory, we compute a vector of attention weights
w across the slots, and the output is a linear combination zread = Mw. Slot memory lacks key fea-
tures of human memory. First, it does not automatically compress – the same content can be written
to multiple slots. Second, the memory does not naturally organize items according to relational
structure, i.e., semantically related items may have unrelated addresses. Third, slot memory is not
naturally generative, while human memory supports imagination (Schacter & Madore, 2016). In
addition, human memory performs novelty-based updating, semantic grouping and event segmenta-
tion (Gershman et al., 2014; Franklin et al., 2019; Howard et al., 2007; Koster et al., 2018). It also
seems to extract regularities across memories to form “semantic memory” (Tulving et al., 1972), a
process likely related to systems consolidation (Kumaran et al., 2016).

The Kanerva Machine (Wu et al., 2018b;a) uses Bayesian inference for memory update, and is natu-
rally compressive and generative. Instead of a matrix M , it maintains a distribution p(M). Reading
with a vector of weights w over columns of M – which specify a query or address for lookup–
corresponds to computing a conditional probability of an observation p(z|M,w), while writing cor-
responds to computing the posterior given an observation p(M |z,w). The Kanerva Machine has a
few disadvantages, due to its flat memory structure. First, it distributes information across all pa-
rameters of the memory distribution without natural grouping. Second, computationally, it scales
poorly with the number of columns m of M , O(m3) for inferring optimal weights w.

We introduce the hierarchically structured Product Kanerva Machine, which organizes memories
into products of k independent parts in the form P (M) =

∏k
i=1 p(Mi). This statistical assumption,

similar to ICA (Bell & Sejnowski, 1995), is closely related to models of disentanglement (Hig-
gins et al., 2018; Locatello et al., 2018), which assume independent priors within each sample, i.e.,
p(z) =

∏k
i=1 p(zi) — here, product factorization of the memory flexibly encompasses indepen-

dence within versus across episodes. Multi-component memory is inspired by neuroscience models
of the gating of memory by contextual signals (Podlaski et al., 2020; Basu et al., 2016; Pignatelli
et al., 2019). Factorizing a Kanerva Machine brings a computational speed advantage, and allows
the individual machines within to specialize, leading to meaningful grouping of information.
∗Equal contribution

1

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Figure 1: Product Kanerva Machine concept and scaling. A) Architecture. B) Generative model. C)
Theoretical scaling of run time with machines k and total columns m.D) Fit to empirical scaling for
m = 100 : 600. E) Training curves for MNIST reconstruction at fixed m = 30 and varying k.

2 THE PRODUCT KANERVA MACHINE

The memory system (Fig. 1A) is composed from k small Kanerva Machines each with mi columns
and c rows, where c is the latent code size andmi = m/k is the number of memory columns per sin-
gle Kanerva Machine. In our experiments, an encoder/decoder pair is used to map between images
x and latent codes z. An assignment network, here a simple multilayer perceptron (see Supp. A.1
for details), is used to compute soft weights {ri} that define the relative strength of reading from
or writing to the ith Kanerva Machine. The model supports writing, queried reconstruction (i.e.,
“reading”), and generation. When generating (Fig. 1B), the assignment network is conditioned on
a history variable h, while when writing to the memory it is conditioned on the current z, and when
reading it is conditioned on the read query zquery. Column weights wi are optimized by least-squares
for reconstructing the query zquery (see Supp. A.1 for details).

The ith Kanerva Machine has the matrix normal distribution p(vec (Mi)) ∼ N (vec (Ri) , Vi ⊗ I)
where Ri is a c × mi matrix containing the mean of Mi, with mi its number of columns, Vi is
a mi × mi matrix giving the covariance between columns, vectorization means concatenation of
columns, and the identity matrix I is c× c. Given addressing weights wi for machine i, the read-out
from memory is the conditional distribution p(z|Mi) ∼ N

(
Miwi, σ

2
i
• I
)
.

Two possible factorizations are mixtures and products. A product model assumes a factorized likeli-
hood p(z) ∝

∏k
i=1 p(z|Mi), which encourages each component p(z|Mi) to extract combinatorial,

i.e., statistically independent, features across episodes (Williams et al., 2002; Hinton, 1999; 2002;
Welling, 2007). A product factorization could therefore comprise a prior encouraging disentangle-
ment across episodes, a milder condition than enforcing factorization across an entire dataset (Lo-
catello et al., 2018; Burgess et al., 2019; Higgins et al., 2018; Watters et al., 2019). A mixture
model (or the related switching models (Fox et al., 2009)), on the other hand, tends to find a nearest-
neighbour mode dominated by one canonical prototype (Hasselblad, 1966; Shazeer et al., 2017).
To address both scenarios, we use a “generalized product” (Cao & Fleet, 2014; Peng et al., 2019)
(Eq. 1), containing both products and mixtures as limits (see Supp. A.5). We thus consider a joint
distribution between z and all k memory matrices, with each term raised to a power ri ≥ 0

p(z,M1, . . .Mi, . . .) ∝
k∏
i=1

p(z,Mi)
ri (1)

During writing, {ri} are inferred from the observation z, and a variable h which stores informa-
tion about history. We use p({ri}|h) during generation and an approximate posterior q({ri}|z,h)
during inference (see Supp. A.2.1 for details). Once {ri} are given, Eq. 1 becomes a product

2

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

of Gaussians, which stays in the linear Gaussian family, allowing tractable inference (Roweis &
Ghahramani, 1999). Given z and {ri}, writing occurs via a Bayesian update to each memory distri-
bution p(Mi|z, {ri}). Updates for the k memories, given z are (see Supp. A.3 for derivation)

∆ = z− µz (2)

Ri ← Ri + βi ∆w>i Vi (3)

Vi ← Vi − βi Viwiw
>
i Vi (4)

where

βi =
1

w>i Viwi + σ2
i /ri

and µz =

∑k
i=1

ri
σ2
i
Riwi

Σkj=1
rj
σ2
j

=
k∑
i=1

γiRiwi

For reading, µz is used as the memory readout. Note how the prediction error term ∆ (as in a Kalman
Filter) now couples the k machines, via µz. Algorithms for writing/reading are given in Supp. A.4.
The generative model (Fig. 1B) is trained by maximizing a variational lower bound (Kingma &
Welling, 2013) L on ln pθ (x) derived in Supp. A.2 (see Supp. A.9 for conditional generations).

3 RESULTS

3.1 SCALING

We first asked if a product factorization could give a computational advantage. For a single Kanerva
Machine, solving for w scales as O(m3) due to the use of a Cholesky decomposition in the least-
squares optimization. Parallel operation across k machines gives theoretical scaling of O((mk)3).
If there are substantial fixed and per-machine overheads, we predict a scaling of the run time of
c + ak + b(m/k)3, with optimum at kopt = (3bm3

a)
1
4 . The empirically determined scaling of the

run-time matches1 this model (Fig. 1C-D). For m > 500, a large speed advantage results even for
moving from k = 1 to 2, showing computational benefit for product factorization.

3.2 QUERIED RECONSTRUCTION

We began with a simple queried reconstruction task. A memory of m = 30 total columns was
divided into k = 1 to k = 15 machines. A set of 45 MNIST digits were written, and then the
memory was read using each item as a query, and the average reconstruction loss 〈ln pθ (x|z)〉qφ(z)

was computed. All factorizations eventually achieved similar reconstruction accuracy (Fig. 1E),
showing that product factorization does not incur a loss in representational power.

3.3 PATTERN COMPLETION

Figure 2: RGB binding task demonstrating sparse machine usage and unsupervised classification.
A) For each step in an episode, machine weights γ0, γ1 are displayed as a thorn plot, showing
sparsity of usage. B) From left to right: original image, query image, reconstructions from each
machine (with other machine blanked) given query image, reconstruction from full product model
given query image. C) Performance when factorizing m = 60 total columns into k = 2 machines
of size 30 vs. a single Kanerva Machine (and stop gradient to assignment weights ri demonstrating
that r is optimized). D) Unsupervised partial MNIST digit classification by the model with k = 2:
the machine assignment weight γ1 is highly correlated with the Red digit class.

We next tested the Product Kanerva Machine on the storage of associations/bindings between high-
dimensional variables, to ask if a product (k = 2) model might show an advantage over a single

1Parameters a = 3.318e-08 ± 1.035e-09, b = 2.176e-01 ± 3.913e-02, c = 3.676e-02 ± 3.787e-03 fit to
m = 400 with R2 = 0.996, which then explain m = 600 with R2 = 0.992 and m = 100 with R2 = 0.958.

3

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Kanerva Machine (k = 1). A set of 45 triplets of MNIST digits were stored in memories with
m = 60 total columns, each triplet consisting of an MNIST digit for the Red, Green and Blue
channels of an image. Partial queries consisting of the R and B channels, but not the G channel,
were presented and the average reconstruction loss was computed across all 3 channels.

For k = 2 machines, the system finds a sparse machine usage pattern (Fig. 2A), with ri ≈ 0 or 1,
but both machines used equally overall. When a given individual machine is used, it reconstructs
the full bound pattern, while the unused machine produces a fixed degenerate pattern (Fig. 2B). A
product of k = 2 machines each of 30 columns outperforms a single machine of 60 columns, while
a stop gradient on r abolishes this (Fig. 2C). Choice of r depends on digit class (Fig. 2D), e.g.,
in Fig. 2D predominantly on the R digit but not the B or G digits (symmetry is broken between B
and R from run to run leading to horizontal or vertical stripes) – see Supp. A.6 for full RGB class
selectivity matrix. Thus, the model optimizes allocation via sparse, dynamic machine choice which
becomes selective to digit class in an unsupervised fashion.

3.4 WITHIN-ITEM FACTORIZATION

Figure 3: “Dancing dSprites” task, demonstrating item factorization across multiple machines. A)
Task design. B) Factorization examples. C) Reconstruction loss vs. k and mi. D-E) Spatial tunings
of individual machines: cosine distance between the reconstruction from each machine and template
dSprite vs. template position. Diagonal in E spans from lower right to upper left in D.

To test whether our model can factorize memory in a semantically meaningful manner, this section
introduces a task based on dSprites (Matthey et al., 2017) that reflects the persistence of objects over
episodes (Bambach et al., 2018). Within each episode, two randomly sampled objects are consis-
tently presented, but moved independently to different positions across different frames. Shapes,
orientations and scales varied across episodes. This setup mirrors the strong correlations between
features that define an object, persisting over a period of time, coupled with the relative indepen-
dence of the positions of any two objects as they move, which corresponds to the product structure
p(frame, object1, object2) ∝ p(frame, object1) · p(frame, object2) that our model assumes.

For k = 4 machines, each with 5 columns, we observed a form of object-based factorization (Fig.
3B): individual machines typically reconstructed distorted images at the positions of single objects
(more examples in Supp. A.7). The k = 4 model outperformed a k = 1 model with the same total
number of columns (Fig. 3C). Individual machine reconstructions exhibited localized spatial tun-
ings to the positions of the individual dSprites (Fig. 3D,E and Supp. A.8). In contrast, tuning was
invariant to the shape, orientation and size of the dSprites (Supp. A.8). Weights ri were nearly fixed,
suggesting that selectivity was not due to varying r. The model thus spontaneously factored accord-
ing to localized spatial tunings, such that single machines typically reconstructed single objects.

4 FUTURE DIRECTIONS

Product Kanerva Machines could be extended in several ways. Attention-based selection of input
elements could be added, or explicit event segmentation over time, or alternative gating methods and
forms of communication between machines, as in (Goyal et al., 2019; Santoro et al., 2018; Hinton
et al., 2018; Veness et al., 2017; Kipf et al., 2018). Auxiliary losses could encourage richer unsu-
pervised classification (Makhzani et al., 2015) for class-dependent routing. The generative model
can be extended with richer distribution families (Rezende & Mohamed, 2015). Joint inference of r
and wi using Expectation Maximization (EM) algorithms may be possible (Dempster et al., 1977).
Further understanding of when and how factorized memories can encourage extraction of objects
or other disentangled features may also be of interest. Ultimately, we hope to use compressive,
semantically self-organizing and consolidating memories to solve problems of long-term credit as-
signment (Ke et al., 2018; Hung et al., 2019), continual learning (van de Ven & Tolias, 2018; Rolnick
et al., 2019) and transfer (Higgins et al., 2017).

4

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

ACKNOWLEDGMENTS

We thank Andrea Banino, Charles Blundell, Matt Botvinick, Marta Garnelo, Jason Ramapu-
ram, Murray Shanahan and Chen Yan for discussions, Sergey Bartunov for initial review of the
manuscript, Loic Matthey for help with dSprites, and Seb Noury for assistance with speed profiling.

REFERENCES

Sven Bambach, David Crandall, Linda Smith, and Chen Yu. Toddler-inspired visual object learning.
In Advances in neural information processing systems, pp. 1201–1210, 2018.

Andrea Banino, Adri Puigdomnech Badia, Raphael Kster, Martin J. Chadwick, Vinicius Zambaldi,
Demis Hassabis, Caswell Barry, Matthew Botvinick, Dharshan Kumaran, and Charles Blundell.
Memo: A deep network for flexible combination of episodic memories. In International Confer-
ence on Learning Representations, 2020.

Sergey Bartunov, Jack W Rae, Simon Osindero, and Timothy P Lillicrap. Meta-learning deep
energy-based memory models. arXiv preprint arXiv:1910.02720, 2019.

Jayeeta Basu, Jeffrey D Zaremba, Stephanie K Cheung, Frederick L Hitti, Boris V Zemelman, Attila
Losonczy, and Steven A Siegelbaum. Gating of hippocampal activity, plasticity, and memory by
entorhinal cortex long-range inhibition. Science, 351(6269):aaa5694, 2016.

Anthony J Bell and Terrence J Sejnowski. An information-maximization approach to blind separa-
tion and blind deconvolution. Neural computation, 7(6):1129–1159, 1995.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and represen-
tation. arXiv preprint arXiv:1901.11390, 2019.

Yanshuai Cao and David J Fleet. Generalized product of experts for automatic and principled fusion
of gaussian process predictions. arXiv preprint arXiv:1410.7827, 2014.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Meire Fortunato, Melissa Tan, Ryan Faulkner, Steven Hansen, Adrià Puigdomènech Badia, Gavin
Buttimore, Charles Deck, Joel Z Leibo, and Charles Blundell. Generalization of reinforcement
learners with working and episodic memory. In Advances in Neural Information Processing
Systems, pp. 12448–12457, 2019.

Emily Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky. Nonparametric bayesian
learning of switching linear dynamical systems. In D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou (eds.), Advances in Neural Information Processing Systems 21, pp. 457–464. 2009.

Nicholas Franklin, Kenneth A Norman, Charan Ranganath, Jeffrey M Zacks, and Samuel J Gersh-
man. Structured event memory: a neuro-symbolic model of event cognition. BioRxiv, pp. 541607,
2019.

Samuel J Gershman, Angela Radulescu, Kenneth A Norman, and Yael Niv. Statistical computations
underlying the dynamics of memory updating. PLoS computational biology, 10(11):e1003939,
2014.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio,
and Bernhard Schölkopf. Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893,
2019.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471, 2016.

Victor Hasselblad. Estimation of parameters for a mixture of normal distributions. Technometrics,
8(3):431–444, 1966.

5

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot trans-
fer in reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1480–1490. JMLR. org, 2017.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende,
and Alexander Lerchner. Towards a definition of disentangled representations. arXiv preprint
arXiv:1812.02230, 2018.

Geoffrey E Hinton. Products of experts. 1999.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em routing. 2018.

Marc W Howard, Bing Jing, Kelly M Addis, and Michael J Kahana. Semantic structure and episodic
memory. Handbook of latent semantic analysis, pp. 121–141, 2007.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting
value. Nature communications, 10(1):1–12, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Weonyoung Joo, Wonsung Lee, Sungrae Park, and Il-Chul Moon. Dirichlet variational autoencoder.
arXiv preprint arXiv:1901.02739, 2019.

Nan Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Michael C Mozer, Chris Pal,
and Yoshua Bengio. Sparse attentive backtracking: Temporal credit assignment through remind-
ing. In Advances in Neural Information Processing Systems, pp. 7640–7651, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefen-
stette, Pushmeet Kohli, and Peter Battaglia. Compile: Compositional imitation learning and
execution. arXiv preprint arXiv:1812.01483, 2018.

Raphael Koster, Martin J Chadwick, Yi Chen, David Berron, Andrea Banino, Emrah Düzel, Demis
Hassabis, and Dharshan Kumaran. Big-loop recurrence within the hippocampal system supports
integration of information across episodes. Neuron, 99(6):1342–1354, 2018.

Dharshan Kumaran, Demis Hassabis, and James L McClelland. What learning systems do intelligent
agents need? complementary learning systems theory updated. Trends in cognitive sciences, 20
(7):512–534, 2016.

Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard Schölkopf, and Olivier
Bachem. Challenging common assumptions in the unsupervised learning of disentangled repre-
sentations. CoRR, abs/1811.12359, 2018.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne,
Yee Whye Teh, and Nicolas Heess. Neural probabilistic motor primitives for humanoid control.
arXiv preprint arXiv:1811.11711, 2018.

6

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Tsendsuren Munkhdalai, Alessandro Sordoni, Tong Wang, and Adam Trischler. Metalearned neural
memory. In Advances in Neural Information Processing Systems, pp. 13310–13321, 2019.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. Mcp: Learn-
ing composable hierarchical control with multiplicative compositional policies. arXiv preprint
arXiv:1905.09808, 2019.

Michele Pignatelli, Tomás J Ryan, Dheeraj S Roy, Chanel Lovett, Lillian M Smith, Shruti Muralid-
har, and Susumu Tonegawa. Engram cell excitability state determines the efficacy of memory
retrieval. Neuron, 101(2):274–284, 2019.

William F Podlaski, Everton J Agnes, and Tim P Vogels. Context-modular memory networks sup-
port high-capacity, flexible, and robust associative memories. bioRxiv, 2020. doi: 10.1101/2020.
01.08.898528.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. arXiv
preprint arXiv:1505.05770, 2015.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. In Advances in Neural Information Processing Systems, pp. 348–
358, 2019.

Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models. Neural compu-
tation, 11(2):305–345, 1999.

Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Theophane Weber,
Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy Lillicrap. Relational recurrent neural
networks. In Advances in Neural Information Processing Systems, pp. 7299–7310, 2018.

Daniel L Schacter and Kevin P Madore. Remembering the past and imagining the future: Identifying
and enhancing the contribution of episodic memory. Memory Studies, 9(3):245–255, 2016.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In Advances
in neural information processing systems, pp. 2440–2448, 2015.

Endel Tulving et al. Episodic and semantic memory. Organization of memory, 1:381–403, 1972.

Gido M van de Ven and Andreas S Tolias. Generative replay with feedback connections as a general
strategy for continual learning. arXiv preprint arXiv:1809.10635, 2018.

Joel Veness, Tor Lattimore, Avishkar Bhoopchand, Agnieszka Grabska-Barwinska, Christo-
pher Mattern, and Peter Toth. Online learning with gated linear networks. arXiv preprint
arXiv:1712.01897, 2017.

Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander Lerchner. Spatial broadcast
decoder: A simple architecture for learning disentangled representations in vaes. arXiv preprint
arXiv:1901.07017, 2019.

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwinska, Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam Santoro, et al. Unsupervised predictive
memory in a goal-directed agent. arXiv preprint arXiv:1803.10760, 2018.

Max Welling. Product of experts. Scholarpedia, 2(10):3879, 2007.

Christopher Williams, Felix V Agakov, and Stephen N Felderhof. Products of gaussians. In Ad-
vances in neural information processing systems, pp. 1017–1024, 2002.

Yan Wu, Greg Wayne, Alex Graves, and Timothy Lillicrap. The kanerva machine: A generative
distributed memory. arXiv preprint arXiv:1804.01756, 2018a.

Yan Wu, Gregory Wayne, Karol Gregor, and Timothy Lillicrap. Learning attractor dynamics for
generative memory. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 9379–9388. 2018b.

7

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

A SUPPLEMENTAL MATERIALS

A.1 EXPERIMENTAL DETAILS AND HYPER-PARAMETERS

A.1.1 HYPER-PARAMETERS

The model was trained using the Adam optimizer (Kingma & Ba, 2014) with learning rate between
5e−5 and 1e−3 and batch size 24.

For the RGB binding task, a high learning rate of 1e−3 was used and encouraged fast convergence
to the sparse machine weights solution. For learning rate of 1e−4 or below, the k = 2 model initially
underperformed the k = 1 model with the same total columns but then rapidly switched to the sparse
solution and superior performance after roughly 200000 train batches.

Latent code sizes c were typically 50 but were 100 for the RGB binding task. The size of the history
variable h was 10.

Convolutional encoders/decoders with ReLU activations were used

• Encoder: output channels [16, 32, 64, 128], kernel shapes (6, 6), strides 1
• Decoder: output channels [32, 16, 1 for grey-scale or 3 for RGB images],

output shapes [(7, 7), (14, 14), (28, 28)], kernel shapes (4, 4), strides 2

except in the case of the dancing dSprites task where a small ResNet (2 layers of ResNet blocks with
leaky ReLU activations each containing 2 convolutional layers with Kernel size 3, with an encoder
output size 128 projected to c and using pool size 3 and stride 2) was used in order to improve
reconstruction quality for dSprites.

A.1.2 TREATMENT OF ADDRESSING WEIGHTS w

For solving for the least-squares optimal read weights w, we used the matrix solvermatrix solve ls
in TensorFlow, in Fast mode with L2 regularizer λ = 0.1 to 0.5, typically 0.35.

A.1.3 TREATMENT OF MACHINE ASSIGNMENT WEIGHTS r

Logits for choosing the k machine weights {ri}, in qφ(rt1:k|ht−1, zt) or Pθ(rt1:k|ht−1), parametriz-
ing a diagonal Gaussian N

(
µr, σ

2
r

)
in the ln(r) space (see Supp. A.2), were created as

follows. During reading and writing, we used µr = Linear1([MLP1(zt),ht−1]), σr =
Linear2([MLP1(zt),ht−1]). During generation, we used µr = Linear3(h), σr = Linear4(h).
MLP1 had layer widths [40, 20, k]. Samples from the resulting Gaussian were passed through a
SoftPlus function to generate effective machine observation noises (Wu et al., 2018a) σi/

√
ri, and

then squared, inverted and normalized to generate the overall machine weight γi = ri
σ2
i
/
∑k
j=1

rj
σ2
j

.
See Supp. A.4 for full machine choice algorithm and Supp. A.2 for definitions of the distributions
in the generative and inference models.

8

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

A.1.4 SPEED TESTS

Speed tests were performed on a V100 GPU machine with 8 CPU cores, with memory operations
assigned to CPU to encourage parallelization and encoder/decoder operations assigned to the GPU.

A.1.5 TUNING ANALYSIS

To analyze the tunings of dSprite reconstruction to dSprite properties (Fig. 3D-E), we used a tem-
plate matching procedure. A template image with individual dSprites at their original individual
positions in the stored images was matched to each machine’s reconstruction x̂ via a cosine distance
on the image pixel vector

x̂machine i•dSpritej
‖x̂machine i‖‖dSpritej‖

where i indexes over the k machines and j indexes over
the two dSprites in each image.

A.2 GENERATIVE MODEL DEFINITION

The generative model (Fig. 1B, see Supp. A.9 for example conditional generations) is trained by
maximizing a variational lower bound (Kingma & Welling, 2013) L on ln pθ (x). For fixed machine
weights ri, we would use an ELBO

L = 〈ln pθ (x|z)〉qφ(z) −
k∑
i=1

[DKL[qφ (wi) ||pθ (wi)] + DKL[qφ (Mi) ||pθ (Mi)]] (5)

where pθ (wi) = N (0, 1). Here, we further consider the exponential weightings ri in the general-
ized product to depend on a latent variable h that summarizes the history, via p(ri|h). This gives a
joint distribution

p(z, {Mi}ki=1, {ri}ki=1,h) = p(z, {Mi}ki=1|{ri}ki=1)

k∏
i=1

p(ri|h) p(h) (6)

where p(z, {Mi}ki=1|{ri}ki=1) ∝
∏k
i=1 p(z,Mi)

ri and results in additional KL divergence terms in
the ELBO

−
k∑
i=1

DKL[q(ri)||p(ri|h)]− DKL[q(h)||p(h)] (7)

The full joint distribution is

Pθ(z1:T ,M
1:T
1:k ,w

1:T
1:k , r

1:T
1:k ,h) = Pθ(M1:k)

T∏
t=1

(
Pθ(zt|M t

1:k,w
t
1:k, r

t
1:k)Pθ(r

t
1:k|h)Pθ(w

t
1:k)
)
Pθ(h)

(8)

=
T∏
t=1

k∏
i=1

Pθ(M
t
i)

T∏
t=1

(
Pθ(zt|M t

1:k,w
t
1:k, r

t
1:k)Pθ(r

t
1:k|ht−1)

k∏
i=1

Pθ(w
t
i)

)
T∏
t=1

Pθ(ht−1)

(9)

Marginalizing out z1:T , we have

Pθ(M
1:T
1:k ,w

1:T
1:k , r

1:T
1:k ,h) =

T∏
t=1

k∏
i=1

Pθ(M
t
i)

T∏
t=1

k∏
i=1

Pθ(w
t
i)

T∏
t=1

Pθ(r
t
1:k|ht−1)

T∏
t=1

Pθ(ht−1) (10)

Pθ(r
t
1:k|ht−1) is a top down generative model for the grouping across machines of content from the

individual component machines of the product model. In order to be able to generate sequentially,
it must only depend on the history up to but not including the outputs from the present timestep,
i.e., ht−1. Rather than parameterizing r as a distribution over categorical distributions, we instead
parameterize ln(r) as a Gaussian (with trainable mean and diagonal variances), and then use a
deterministic trainable network to produce r.

Pθ(w
t
i) is a standard Gaussian prior.

9

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Pθ(ht−1) is a standard Gaussian prior.

(As an alternative prior on h, we can use a time-varying AR(1) process as the prior, Pθ(ht−1|ht−2):
this will allow the history variable to perform a random walk within an episode while slowly decay-
ing to a standard Gaussian over time, as was used in Merel et al. (2018).)

Pθ(M
t
i) is the trainable matrix Gaussian prior of each Kanerva Machine in the product model.

Pθ(zt|M t
1:k,w

t
1:k, r

t
1:k) is the generation procedure for one step of the Product Kanerva Machine

model as described elsewhere in this document. It will output the mean w>i Mi from each machine
and then combine them using the machine weights r.

Note: we do not use any additional prior Pθ(z), such as a standard Gaussian, and likewise when we
have an encoder from the image to the latent e(z|x) we do not subject it to a VAE-style standard
Gaussian prior, instead just using a simple autoencoder with conv-net encoder e(z|x) and deconv-net
decoder d(x|z) outputting the p parameter of a Bernoulli distribution for each image pixel.

A.2.1 INFERENCE MODEL

We use the following factorization of the approximate posterior to infer the hidden variables given a
sequence of observations

qφ(M1:T
1:k ,w

1:T
1:k , r

1:T
1:k ,h|z1:T) = qφ(M1:T

1:k |w1:T
1:k , r

1:T
1:k ,h, z1:T)qφ(r1:T1:k |h, z1:T)qφ(w1:T

1:k |z1:T)qφ(h|z1:T)

(11)

=

T∏
t=1

qφ(M t
1:k|wt

1:k, r
t
1:k,h, zt,M

t−1
1:k)

T∏
t=1

qφ(wt
1:k|zt, rt1:k,M t−1

1:k)

T∏
t=1

qφ(rt1:k|ht−1, zt)

T∏
t=1

qφ(ht−1|z1:t−1)

(12)

qφ(M t
1:k|wt

1:k, r
t
1:k,h, zt,M

t−1
1:k) is the write step of our Product Kanerva Machine and is described

elsewhere in this document

qφ(wt
1:k|zt, rt1:k,M

t−1
1:k) is the “solve for w given query” step of our Product Kanerva Machine and

is performed by least-squares optimization.

qφ(rt1:k|ht−1, zt) is a bottom-up inference model producing the machine weights variable r. Rather
than parameterizing r, we instead parameterize ln(r) as a Gaussian (with trainable mean and diag-
onal variances), and then use a deterministic trainable network to produce r.

qφ(ht−1|z1:t−1) is where we will use a superposition memory to store a record of previous ~z and
their associated r variables which will be used to produce the history variable h. The superposition
buffer takes the form Ωt = 1

tΨ([zt, r
t
1:k]) + t−1

t Ωt−1 where Ψ is a trainable embedding function.
Then the distribution over the history variable h can be a diagonal Gaussian qφ(ht−1|z1:t−1) =
N(µ, σ) where µ = MLPa(Ωt−1) and σ = MLPb(Ωt−1) (we used small MLPs with layer widths
[10, 10] here for MLPa and MLPb).

10

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

A.2.2 ELBO

The full ELBO is

lnPθ(z1:T) ≥
〈
Pθ(z1:T ,M

1:T
1:k ,w

1:T
1:k , r

1:T
1:k ,h)

qφ(M1:T
1:k , w

1:T
1:k , r

1:T
1:k ,h|z1:T)

〉
qφ(M1:T

1:k ,w
1:T
1:k ,r

1:T
1:k ,h|z1:T)

(13)

=
〈
lnPθ(z1:T |M1:T

1:k ,w
1:T
1:k , r

1:T
1:k ,h)

〉
qφ(M1:T

1:k ,w
1:T
1:k ,r

1:T
1:k ,h|z1:T)

(14)

− DKL[qφ(M1:T
1:k , w

1:T
1:k , r

1:T
1:k ,h|z1:T)||Pθ(M1:T

1:k ,w
1:T
1:k , r

1:T
1:k ,h)] (15)

=
〈
lnPθ(z1:T |M1:T

1:k ,w
1:T
1:k , r

1:T
1:k ,h)

〉
qφ(M1:T

1:k ,w
1:T
1:k ,r

1:T
1:k ,h|z1:T)

(16)

− DKL[
T∏
t=1

qφ(M t
1:k|wt

1:k, r
t
1:k,h, zt,M

t−1
1:k)||

T∏
t=1

k∏
i=1

Pθ(M
t
i)] (17)

− DKL[
T∏
t=1

qφ(wt
1:k|zt, rt1:k,M

t−1
1:k)||

T∏
t=1

k∏
i=1

Pθ(w
t
i)] (18)

− DKL[
T∏
t=1

qφ(rt1:k|ht−1, zt)||
T∏
t=1

Pθ(r
t
1:k|ht−1)] (19)

− DKL[
T∏
t=1

qφ(ht−1|z1:t−1)||
T∏
t=1

Pθ(ht−1)] (20)

=
〈
lnPθ(z1:T |M1:T

1:k ,w
1:T
1:k , r

1:T
1:k ,h)

〉
qφ(M1:T

1:k ,w
1:T
1:k ,r

1:T
1:k ,h|z1:T)

(21)

−
T∑
t=1

k∑
i=1

DKL[qφ(M t
i |wt

i , r
t
i ,h, zt,M

t−1
i)||Pθ(M t

i)] (22)

−
T∑
t=1

k∑
i=1

DKL[qφ(wt
i |zt, rti ,M t−1

i)||Pθ(wt
i)] (23)

−
T∑
t=1

DKL[qφ(rt1:k|ht−1, zt)||Pθ(rt1:k|ht−1)] (24)

−
T∑
t=1

DKL[qφ(ht−1|z1:t−1)||Pθ(ht−1)] (25)

Regarding the term DKL[qφ(rt1:k|ht−1, zt)||Pθ(rt1:k|ht−1)], this should ideally be a KL between two
Dirichlet distributions (Joo et al., 2019), i.e., between distributions over categorical distributions.
Rather than parameterizing r, we instead parameterize ln(r) as a Gaussian (with trainable mean
and diagonal variances), and then use a deterministic trainable network to produce r itself. We are
then left with Gaussian KLs which are easy to evaluate and Gaussian variables which are easy to
re-parametrize in training.

Note: For Fig. 1 and Fig. 2, we relaxed distributional constraints on w in the loss function in
order to lower variance, by removing the KL loss DKL[qφ(wt

i |zt, rti ,M
t−1
i)||Pθ(wt

i)] on w in the
writing step (but not the reading step), and by using the mean w rather than sampling it. The full
model was used in Fig. 3. The mixture model of Supp. A.5 was trained without the KL penalty
DKL[qφ(M t

i |wt
i , r

t
i ,h, zt,M

t−1
i)||Pθ(M t

i)] on M to reduce variance, and also did not include KL
terms for h or r.

11

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

A.2.3 SAMPLING FROM THE GENERATIVE MODEL

To generate full episodes autoregressively:

• We first sample priors Pθ(Mi), Pθ(wi) and Pθ(h) and then sample Pθ(rt1:k|ht−1) and
Pθ(zt|M t

1:k,w
t
1:k, r

t
1:k) to produce r1

1:k and then z1.
• z1 is then decoded to an image x̂1 = d(z1), each pixel of the image rounded to 0/1 and

then the image re-encoded as e(x̂1). We then query the memory with the re-encoded image
e(x̂1) to obtain an updated z1. This step is repeated several times, 12 times here, to allow
the memory to “settle” into one of its stored attractor states (Wu et al., 2018b).
• We then write z1 into the product memory M using the analytical memory update
qφ(M t

1:k|wt
1:k, r

t
1:k,h, zt,M

t−1
1:k) of Eqs. 2-4 and [z1, r

1
1:k] into the history h via Ω by

using Ωt ← 1
tΨ([zt, r

t
1:k]) + t−1

t Ωt−1.

• We then sample qφ(ht−1|z1:t−1) to produce h1 and sample Pθ(rt|ht−1) to produce r2.
• We then read the memory, using as read weights a draw from the priors on wi, Pθ(wi),

and as machine weights our r2, which allows us to produce z2.
• ...and so on, until finished generating.

Note that if a partial episode has been written to begin with, we will simply haveM and Ω and hence
h pre-initialized before starting this process rather than using their priors.

A.3 DERIVATION OF PRODUCT KANERVA WRITE AND READ OPERATIONS

A.3.1 REVIEW OF KANERVA MACHINE

To derive the Product Kanerva Machine, we first reformulate a single Kanerva Machine in terms of
a precision matrix rather than covariance matrix representation.

For a single Kanerva Machine, recall that the posterior update of the memory distribution P (Mi|z)
is given by the Kalman filter-like form

Ri ← Ri + (z−Riwi)
1

w>i Viwi + σ2
i

w>i Vi (26)

Vi ← Vi − Vi wi
1

w>i Vi wi + σ2
i

w>i Vi (27)

In addition, recall that we can analytically compute the mean and covariance of the joint distribution
of z and Mi, as well as of the marginal distribution of z (integrating out Mi):

p(z,Mi) = p(z|Mi) p(Mi) ∼ N (µi,Σi) (28)

pi(z) =

∫
p(z|Mi) p(Mi) dMi ∼ N

Riwi, (w>i Viwi + σ2
i)︸ ︷︷ ︸

Σzi

•I

 (29)

where

µi =

[
Riwi

vec (Ri)

]
(30)

Σi =

[
Σzi Σ>ci
Σci , Vi

]
⊗ I (31)

The joint covariance is a Kronecker product of a block matrix, where the upper left block is 1× 1 (a
scalar), the upper right is 1 ×mi, the lower left is mi × 1 and the lower right is mi ×mi, and I is
the c× c identity matrix.

To convert to the precision matrix representation, we can use the block matrix inversion rule to
obtain the precision matrix for a single Kanerva Machine, similar to eqns. (10) and (11) in Williams
et al. (2002):

Λi = Σ−1
i =

[
σ−2
i Λ>ci

Λci ΛMi

]
⊗ I (32)

12

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

where

Λci = −σ−2
i wi (33)

ΛMi = V −1
i + wi σ

−2
i w>i (34)

=
(
Vi − Viwi (σ2

i + w>i Viwi)
−1 w>i Vi

)−1
(35)
(36)

with the last step due to the Woodbury identity (Bishop, 2006). Λ−1
Mi

is the updated posterior covari-
ance matrix of the memory after an observation of z.

A.3.2 PRODUCTS OF KANERVA MACHINES

So far, we have dealt only with reformulating the notation for a single Kanerva Machine. What about
the product of many Kanerva Machines? We can now consider the full joint distribution between
observed z and all of the memory matrices, which we assume to factor according to the product of
the individual joint Gaussian distributions between z and each memory:

p(z,M1, . . .Mi, . . .) ∝
k∏
i=1

p(z,Mi) (37)

∼ N
(
µ,Λ−1

)
(38)

From the mean and precision form of p(z,Mi), and using the fact that the precision matrix of a
product of Gaussians is the sum of the individual precision matrices and that the mean is a precision
weighted average of the individual means

µproduct =

µ1

σ2
1

+ µ2

σ2
2

1
σ2
1

+ 1
σ2
2

(39)

Λproduct = Λ1 + Λ2 (40)

we have the joint precision matrix

Λ =

Λz Λ>c1 Λ>c2 ...
Λc1 ΛM1

Λc2 ΛM2

...

 (41)

By completing the square, we can compute the parameters of the conditional p(z|M1:m):

Λz = σ−2
z =

k∑
i=1

σ−2
i (42)

and the joint mean

µ =

µz

vec (R1)
vec (R2)

...

 (43)

µz =
k∑
i=1

γiRiwi (44)

where the coefficient γi is the normalised accuracy

γi =
σ−2
i∑k

j=1 σ
−2
j

(45)

13

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

and k is the number of machines.

Note that in the block matrix of equation 41, only the upper left corner couples between the blocks
for the different machines/memories. Thus, the posterior update of the covariance, which does not
depend on this term, is unmodified compared to the case of individual uncoupled Kanerva Machines.

The memory update rule for p(Mi|z) is modified as:

∆ = z− µz (46)

Ri ← Ri + βi ∆w>i Vi (47)

Vi ← Vi − βi Viwiw
>
i Vi (48)

where

βi =
1

w>i Viwi + σ2
i

(49)

(50)

Note that the only thing that makes this different than independent machine updates is the change in
the prediction error term ∆ which, which now couples the machines via µz from Eq. 44.

Readout takes the form of a simple precision weighted average µz of the outputs of each individual
machine, again from Eq. 44.

A.3.3 GENERALIZED PRODUCTS OF KANERVA MACHINES

Following Cao & Fleet (2014) we further consider a “generalized product model” in which each
term in the product of joint distributions may be weighted to a variable amount by raising it to a
positive power ri, such that

p(z,Mi|ri) ∝ p(z,Mi)
ri (51)

Since a Gaussian raised to a power is equivalent multiplication of the precision matrix by that power,
we may simply replace Λi → Λiri in the above derivation of the product model, for each individual
Kanerva Machine, and then proceed with the derivation as normal. The readout equations 44 and 45
for µz are

γi →
ri/σ

2
i∑k

j=1 rj/σ
2
j

(52)

µz =

k∑
i=1

γiRiwi (53)

Meanwhile, in the update equations, we replace Vi → Vi/ri and σ2
i → σ2

i /ri, leading to:

∆ = z− µz (54)

Ri ← Ri + βi ∆w>i Vi (55)

Vi ← Vi − βi Viwiw
>
i Vi (56)

where

βi =
1

w>i Viwi + σ2
i /ri

(57)

µz =

∑k
i=1

ri
σ2
i
Riwi

Σkj=1
rj
σ2
j

(58)

This gives our update equations 2-4 in the main text.

Note that 1/η2
i := ri/σ

2
i may also be treated as a single parameter here, and ηi generated as the

output of a neural network. ηi then serves as an effective observation noise σi for the posterior
update of machine i.

14

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Remark. We can understand the coupling between machines during update by expanding the pre-
diction term in equation 3:

∆ =

z−
∑
j 6=i

γjRjwj

− γiRiwi (59)

where terms in the bracket represent the residual from all other j 6= i machines’ predictions. There-
fore, machine i is updated to reduce this residual, which may then change the residual for other
machines. Because of this inter-dependency, the updates of machines are coupled and may take
several iterations to converge.

In practice, we use a single iteration, making the model fully parallelizable over the k machines.

A.4 ALGORITHMS FOR WRITING AND READING

Here we present pseudocode for writing and reading in the Product Kanerva Machine.

For clarity, generation and optimization of the ELBO is treated separately in Supp. A.2.3.

Algorithm 1 Generalized Product Writing
Input: Input episode {xt}Tt=1, and Kanerva Machines {Mi}ki=1 with means Ri and column covariances Vi,
total columns m, code size c, k machines of size mi = m/k columns each, and T is the episode length.
Initialization: Each Kanerva Machine has a trainable prior mean matrix initialized as R0

i ∼ N (0, I) and a
diagonal prior column covariance with trainable scale, generated as a truncated unit normal V 0

i = ψI , where
ψ is a trainable variable whose logarithm is initialized to ln(1.0).
The internal slot weighting wi of each machine has a prior p0(wi) = N (0, I). wi is sampled from a
normal distribution with mean produced by a least squares solution, and a diagonal covariance with standard
deviation χ, where χ is a trainable variable whose logarithm is initialized to ln(0.3). Ω0 is initialized to ~0.
for t = 1,...,T do

zt ← e(xt) where e is the ConvNet encoder with output dim c

ht−1 ∼ qφ(ht−1|z1:t−1) = N(µ, σ) where µ = MLPa(Ωt−1) and σ = MLPb(Ωt−1).
DefineN

(
µr, σ

2
r

)
with µr = Linear1([MLP1(zt),ht−1]), σr = Linear2([MLP1(zr),ht−1])

η ∼ N
(
µr, σ

2
r

)
with ηi representing σi/

√
ri

γ: γi = 1
η2i
/
∑k
j=1

1
η2i

representing γi → ri/σ
2
i∑k

j=1 rj/σ
2
j

for j=1,..., k do:
wj ← LeastSquaresOptimize(Mj , zt)

end for
∆← zt −

∑k
l=1 γlRlwl

for i=1, ..., k do
Vi ← Vi − 1

w>
i
Viwi+η

2
i

Viwi w
>
i Vi

Ri ← Ri + ∆ 1

w>
i
Viwi+η

2
i

w>i Vi

end for
Ωt ← 1

t
Linear0([zt, γ]) + t−1

t
Ωt−1

end for

Algorithm 2 Generalized Product Reading
Input: Input episode {xt}Tt=1, and filled Kanerva Machines {Mi}ki=1 and history variable h0.
for t = 1,...,T do

zt ← e(xt) where e is the ConvNet encoder with output dim c
DefineN

(
µr, σ

2
r

)
with µr = Linear1([MLP1(zt),ht−1]), σr = Linear2([MLP1(zt),ht−1])

η ∼ N
(
µr, σ

2
r

)
with ηi representing σi/

√
ri

γ: γi = 1
η2i
/
∑k
j=1

1
η2i

representing γi → ri/σ
2
i∑k

j=1 rj/σ
2
j

for j=1,...,k do
wj ← LeastSquaresOptimize(Mj , zt)

end for
µz ←

∑k
j=1 γjRjwj

end for

15

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

A.5 MIXTURE MODEL

A mixture Kanerva Machine model has k mixture coefficients γi, forming a categorical distribution.
The categorical distribution is sampled to yield a one-hot vector γ̂i. We then have a read output

zread ←
k∑
i=1

γ̂iRiwi (60)

and the writing update for machine i is

Vi ← Vi − γ̂i
1

w>i Viwi + σ2
i

Viwi w
>
i Vi (61)

Ri ← Ri + γ̂i(zt −Riwi)
1

w>i Viwi + σ2
i

w>i Vi (62)

The generalized product model becomes a mixture model when r is one-hot. To see this, note that
in this case, in the Product Kanerva Machine, the prediction error ∆ for the single machine i for
which ri = 1 inside the product becomes z − Riwi while the readout simply becomes Riwi, as
in a single Kanerva Machine, while in writing we reduce to the formula for β for a single Kanerva
Machine. If i is such that ri = 0 we have no readout from that machine and β in writing becomes
0 since the denominator becomes∞. Thus, choosing r as one-hot thus corresponds to selecting a
single machine while ignoring the others, while a mixture model corresponds to a stochastic choice
of such a one-hot r.

We trained such a mixture mixture model using categorical reparametrization via Gumbel-SoftMax
sampling (Jang et al., 2016; Maddison et al., 2016) of the machine choice variable. We verified that
the Gumbel-SoftMax procedure was resulting in gradient flow using stop-gradient controls.

The mixture model shows MNIST digit class selective machine usage (Fig. 4A-C), but its perfor-
mance degraded (Fig. 4D) as a fixed total number of slots was divided among an increasing number
of machines k, in contrast to the robust performance of the product model in Fig. 1 of the main text.

Note that in the RGB binding task (Fig. 2), the network spontaneously found weights approaching
{0, 1}, but it was able to explore a continuous space of soft weights in order to do so, unlike in a
mixture model where the weights are one-hot once sampled.

A.6 FULL RGB BINDING TASK SELECTIVITY MATRIX

Fig. 5 shows the full machine usage matrix for k = 2 machines on the RGB binding task as a
function of the R, G and B MNIST digit classes.

A.7 ADDITIONAL REPRESENTATIVE RECONSTRUCTIONS FROM DANCING DSPRITES TASK

Fig. 6 shows reconstructions from four different training runs on the dancing dSprites task with
k = 4 machines, episode length T = 15 and m = 20 total columns.

A.8 DANCING DSPRITE SELECTIVITIES AND INVARIANCES

Tunings of individual machine reconstructions to dSprite properties were spatially localized and
diverse, and seemed to approximately uniformly tile space across the machines, with machines 0
and 2 responsible for edges (Fig. 7A), but were invariant to shape, orientation and size (Fig. 7B).
The slope of the curve with respect to size is an artifact of the template matching procedure and
the fact that single machine reconstructions are typically smaller than the template dSprites they are
matched to.

16

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Figure 4: Mixture model result on queried MNIST reconstruction. A) Machine usage (norm of
vector read from machine i during reconstruction, times the read weight for machine i) as a function
of digit class for k = 2 machines. B) Machine usage as a function of MNIST digit class (0-9) for
k = 3 machines. C) Queried single machine reconstructions, and full mixture reconstruction (far
right) for a mixture model with 3 machines. Machines 0 and 2 are displaying a degenerate class-
agnostic pattern corresponding to the average of all MNIST digits, while machine 1 is responsible
for reconstructing this digit, consistent with its dominance for digit class 2 in panel B. D) Training
curve for a mixture model at fixed total slots m = 30 and increasing k, showing performance
degradation with k.

A.9 CONDITIONAL GENERATIONS

Example conditional generations from the Product Kanerva Machine with k = 4 and mi = 5
after loading a short episode of four dancing dSprite images (Fig. 8). Twelve iterations of “attractor
settling” were used (Wu et al., 2018b). In several of the generations the memory has simply retrieved
a stored item, whereas in a few generations the model hallucinates noisy spatially localized patterns.

17

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Figure 5: Full selectivity matrix for MNIST RBG binding task with a k = 2 product model. In this
example, machine choice is sensitive to the digit class of the Red channel but relatively insensitive
to that of the Blue or Green channels. Y: red digit class. X: blue digit class. Image: green digit class.
Grayscale within each image: the machine assignment weight γ1.

18

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Figure 6: Additional dancing dSprite reconstructions showing object separation and spatial tuning.
Four individual runs are shown (columns), with many examples from each run (rows). For each run,
reconstructions were taken after each of 30 successive 5000 train steps (rows) starting at 100000
train batches. O: Original. 0-3: Reconstructions from each single machine when queried with the
full image. P: Product reconstruction.

19

Published as a workshop paper at “Bridging AI and Cognitive Science” (ICLR 2020)

Figure 7: Additional selectivities and invariances in the dancing dSprites task. A) Spatial tunings
of each of the k = 4 machines to each of the 2 dSprite positions. Note how tunings across the
four machines approximately tile space. B) Tunings to other properties of the individual dSprites:
shape (oval, square or heart), orientation (0 to 2π) and scale. These properties are invariant across
machines. Note that the slope in the curves with respect to scale (right) is due to the fact that single
machine reconstructions are typically smaller than the template dSprites they are matched to.

Figure 8: Conditional generation example with k = 4. The top row of images (“presented episode”)
was loaded into memory, and then 10 generative samples were taken (bottom two rows) without
further updates to the memory. 12 iterations of attractor settling (Wu et al., 2018b) were used to
generate each image.

20

	Introduction
	The Product Kanerva Machine
	Results
	Scaling
	Queried reconstruction
	Pattern completion
	Within-item factorization

	Future directions
	Supplemental Materials
	Experimental details and hyper-parameters
	Hyper-parameters
	Treatment of addressing weights w
	Treatment of machine assignment weights r
	Speed tests
	Tuning analysis

	Generative model definition
	Inference model
	ELBO
	Sampling from the generative model

	Derivation of Product Kanerva write and read operations
	Review of Kanerva Machine
	Products of Kanerva Machines
	Generalized Products of Kanerva Machines

	Algorithms for writing and reading
	Mixture model
	Full RGB binding task selectivity matrix
	Additional representative reconstructions from dancing dSprites task
	Dancing dSprite selectivities and invariances
	Conditional generations

