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ABSTRACT

The interplay between human learning and synaptic pruning has long been of great
interest to cognitive scientists. The term ”Use it or lose it” is frequently used to
describe the environmental influence of the learning process on synaptic pruning.
However, there is little scientific consensus on what exactly is lost. In this work, we
ask how varying the number of network weights alters the generalization behavior
of a network at a class and exemplar level. Models with radically different numbers
of weights have comparable top-line performance metrics, but diverge considerably
in behavior on a narrow subset of the input distribution. We explore why varying
the number of weights disproportionately and systematically impacts a small subset
of classes and examples, which we term pruning identified exemplars (PIEs). Our
work provides insights about the role of capacity in deep neural networks and is a
valuable human-in-the-loop tool for understanding the trade-offs incurred when
deploying compressed models to the real world.

1 INTRODUCTION

Between infancy and adulthood, the number of synapses in our brain first increase and then fall.
Synaptic pruning improves efficiency by removing redundant neurons and strengthening synaptic
connections that are most useful for the environment (Rakic et al., 1994). Despite losing 50% of all
synapses between age two and ten, the brain continues to function (Kolb & Whishaw, 2009; Sowell
et al., 2004). The phrase ”Use it or lose it” is frequently used to describe the environmental influence
of the learning process on synaptic pruning, however there is little scientific consensus on what
exactly is lost (Casey et al., 2000).

In 1990, a popular paper was published titled “Optimal Brain Damage” (Cun et al., 1990). The paper
was among the first (Hassibi et al., 1993b; Nowlan & Hinton, 1992; Weigend et al., 1991; Mozer &
Smolensky, 1989) to propose that deep neural networks could be pruned of “excess capacity” in a
similar fashion to our biological synaptic pruning. In deep neural networks, weights are pruned or
removed from the network by setting the value to zero. At face value, deep neural network pruning
also appears to promise you can (almost) have it all. State of art pruning techniques remove the
majority of weights with an almost negligible loss to top-1 accuracy (Gale et al., 2019). These
newly slimmed down networks require less memory, energy consumption and have lower inference
latency. All these attributes make pruned models ideal for deploying deep neural networks to resource
constrained environments (Lane & Warden, 2018).

However, the ability to prune networks with seemingly so little degradation to generalization perfor-
mance is puzzling. How can networks with radically different structures and number of parameters
have comparable top-level metrics? One possibility may be that test-set accuracy is not a precise
enough measure to capture how pruning impacts the generalization properties of the model.

We explore this hypothesis in this work by going beyond test-set accuracy and proposing a formal
methodology to evaluate the impact of pruning at a class and exemplar level (Section 1.1). The
measures we propose identifies classes and images where there is a high level of disagreement or
difference in generalization performance between pruned and non-pruned models.

We find that:

1. Top-line metrics such as top-1 or top-5 test-set accuracy hides critical details in the ways
that pruning impacts model generalization. Pruning in deep neural networks is better
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true: cloak ladle espresso mashed potato
baseline model: gasmask ladle espresso mashed potato

pruned model: breastplate perfume red wine ice cream

true: stretcher sewing machine bathtub crutch
baseline model: folding chair sewing machine bathtub crutch

pruned model: barrow polaroid camera cucumber apron

Figure 1: The exemplars most sensitive to varying capacity are more challenging for both fully
parameterized models and humans to classify. This figure visualizes a selection of ImageNet
exemplars most impacted by pruning (PIEs). Below each image: the ground truth label, the most
frequent non-pruned prediction and most frequent pruned prediction.

described as “selective brain damage” where a small subset of classes and exemplars are
disproportionately and systematically impacted by the introduction of pruning.

2. Why are certain exemplars more sensitive to varying capacity? For everyday object clas-
sification datasets like ImageNet (Deng et al., 2009), we conduct a human study and find
that PIEs tend to overindex on images in the long-tail of the natural image distribution. Our
human study shows that PIEs are more challenging for both human and model.

3. For datasets like CelebA (Liu et al., 2015) PIE surfaces known spurious correlations between
protected demographic attributes. PIEs over-index on the protected attribute, which suggests
that compression methods like pruning may pose unexpected trade-offs with other properties
we may care about such as fairness.

We establish consistent results across multiple datasets—ImageNet, CelebA and Cifar-10 (Krizhevsky,
2012) —and model architectures— a wide ResNet model (Zagoruyko & Komodakis, 2016) and a
ResNet-50 model (He et al., 2015).

1.1 METHODOLOGY AND EXPERIMENT SETUP

We start by asking a simple question: is the impact of pruning uniform or are certain classes
disproportionately impacted? If the impact of pruning was uniform across all classes, we would
expect the model accuracy on each class to shift by the same number of percentage points as the
difference in top-1 accuracy between the pruned and non-pruned model.

This forms our null hypothesis (H0) – the shift in accuracy for class c before and after pruning is the
same as the shift in top-1 accuracy. For each class c we consider whether to reject H0 and accept
the alternate hypothesis (H1) that pruning disparately impacted the class’s accuracy βc

t in either a
positive or negative direction:

H0 : βc
0 − βM0 = βc

t − βMt (1)

H1 : βc
0 − βM0 6= βc

t − βMt (2)

We independently train a population of K = 30 models for each level of pruning, dataset and model
that we consider. Thus, for each level of pruning t ∈ 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 we have a sample of
30 functions from the underlying population of possible models trained to that capacity. The pruning
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true: blonde hair blonde hair blonde hair blonde hair blonde hair
baseline model: not blonde blonde hair blonde hair not blonde blonde hair
pruned model: blonde hair not blonde not blonde blonde hair not blonde

Figure 2: A selection of CelebA exemplars most impacted by pruning (PIEs). PIEs over-index on
spurious correlations between demographic attributes like gender and the true label. This suggests
deploying compressed models may incur trade-offs with other properties we may care about such
as fairness. Below each image: the ground truth label, the most frequent non-pruned prediction and
most frequent pruned prediction (across models trained to 50% pruning).

fraction t indicates the percentage of weights removed. For example, t = 0.9 indicates that 90%
of model weights are removed over the course of training, leaving a maximum of 10% non-zero
weights. Our experimental setup is computationally intensive but necessary to arrive at insights
beyond anecdotal observations.

For each class c, we we use a two-sample, two-tailed, independent Welch’s t-test (Welch, 1947) to
determine whether the mean-shifted class accuracy Sc

t = {βc
t,k − βMt,k}Kk=1 of the samples Sc

t and
Sc
0 differ significantly. If the p-value <= 0.05, we reject the null hypothesis and consider the class

to be disparately impacted by t-pruning relative to the baseline. After finding the subset of classes
for a given t-pruning that shows a statistically significant change relative to the baseline, we can
quantify the degree of deviation, which we refer to as normalized recall difference, by comparing the
average t-pruned and baseline class accuracies after normalizing for their respective average model
accuracies:

1

Kt

Kt∑
k=1

(
βc
t,k − βMt,k

)
− 1

K0

K0∑
k=1

(
βc
0,k − βM0,k

)
(3)

The normalized recall difference ensures that we are controlling for any overall difference in test-set
accuracy between the samples. We ask instead whether the class performed better or worse than
expected for a given level of pruning. We include the details of training hyperparameters and the
pruning methodology for each dataset in the appendix.

1.2 WHAT DO WE GIVE UP WHEN WE PRUNE?

We find that test-set accuracy provides insufficient insight into the trade-offs incurred by pruning.
While pruned models are comparable to non-pruned using top-1 accuracy, performance diverges
considerably on a small subset of classes which are disproportionately impacted in a statistically
significant way (As seen in appendix Fig 5). Certain parts of the data distribution are far more
sensitive to varying the number of weights in a network, and bear the brunt cost of altering the
network structure. The directionality and magnitude of the impact is nuanced and surprising. Our
results show that within the small subset of classes significantly impacted, more classes are relatively
robust to the overall degradation experienced than the small subset that degrades in performance far
more than the model itself. However, the magnitude of class decreases is larger than the gains (which
pulls overall accuracy downwards).

Our findings at a class level prompt the natural question of why certain classes are impacted more
than others? To explore this question, we consider the impact of pruning on individual images.
Given the limitations of uncalibrated probabilities in deep neural networks (Guo et al., 2017; Kendall
& Gal, 2017; Lakshminarayanan et al., 2017), we focus on the level of disagreement between the
predictions of pruned and non-pruned networks on a given image. We classify Pruning Identified
Exemplars (PIEs) as the images where the most frequent prediction differs between a population of
independently trained pruned and non-pruned models.

We find that PIEs, the images most sensitive to pruning, overindex on the long-tail of the image
distribution. We conduct a human study (85 participants (Appendix Fig. 4) and find that for everyday
objects dataset like ImageNet PIEs heavily overindex relative to non-PIEs on certain properties, such
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Figure 3: A comparison of model performance on a random sample of 1024 PIE, non-PIE and random
images drawn independently from the test-set. Inference on the non-PIE sample improves test-set
top-1 accuracy relative to the baseline for both ImageNet and Cifar-10. Inference on PIE images
alone substantially degrades generalization performance of pruned models for all datasets considered.

as having an incorrect ground truth label, involving a fine-grained classification task or multiple
objects. Over half of all PIE images were classified by human participants as either having an incorrect
ground truth label or depicting multiple objects. PIEs are also more challenging for non-pruned
models to generalize to. In Fig. 3, we compare the test-set performance of a non-pruned model on a
fixed number of randomly selected ImageNet (1) PIE images, (2) non-PIE images and (3) a random
sample of the test set. Top-line metrics greatly degrade when inference is restricted to PIE. Removing
PIE images from the test-set improves top-1 accuracy for both pruned and non-pruned models relative
to a random sample.

1.3 PIE AS A HUMAN-IN-THE-LOOP VISUALIZATION TOOL

Our PIE methodology identifies a tractable subset of images which are more challenging for pruned
and non-pruned models. On every-day object datasets like ImageNet, PIEs over-index on noisy
data which is mislabelled or incorrectly structured for the task. However, sometimes the stakes are
higher than correctly classifying guacamole or canoe. Pruned models are widely used by many
real world machine learning applications which often occur in sensitive domains like health care
or self-driving cars. To understand how pruning trades off against properties like fairness which
are of great concern in these sensitive domains, we consider how varying the number of weights
causes performance to diverge on a dataset with a known spurrious correlation between protected
demographic attributes.

CelebA has a known spurious association between a target label (blonde vs non-blonde hair color) and
two protected demographic attributes which are codified in the dataset (gender = male, female and
age = young, old). There are 19962 test examples, with 62 in the smallest group (blond-haired old
males). If reducing capacity amplified the existing bias of the models towards the underrepresented
demographic group blonde old males, we would expect to also see PIEs over-index on blonde old
males. In Table 1 we show that PIEs do indeed do so, which suggests varying the number of weights
amplifies existing biases towards underrepresented protected attributes.

Conclusion and future work Our results suggest that while overall accuracy is comparable be-
tween pruned and non-pruned models, performance between models with radically different numbers
of weights diverges in a significant way on the long-tail of the input distribution. This can introduce
unintended trade-offs such as compromising model performance on underrepresented classes or
vantage points. We suggest that visualizing PIEs can be a valuable human-in-the-loop machine
learning tool which could be used to surface a tractable subset of atypical examples for further human
inspection (Leibig et al., 2017; Zhang, 1992), choose not to classify certain examples when the model
is uncertain (Bartlett & Wegkamp, 2008; Cortes et al., 2016b;a), or to aid interpretability as a case
based reasoning tool to explain model behavior (Kim et al., 2016; Gurumoorthy et al., 2017; Caruana,
2000; Hooker et al., 2019; Bien & Tibshirani, 2011). Further work is needed to understand how PIEs
can be leveraged to propose more robust and equitable pruning methods.
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2 APPENDIX

3 RELATED WORK

Model compression is diverse and includes research directions such as: reducing the precision
or bit size per model weight (quantization) (Courbariaux et al., 2014; Hubara et al., 2016; Gupta
et al., 2015); efforts to start with a network that is more compact with fewer parameters, layers or
computations (architecture design) (Howard et al., 2017; Iandola et al., 2016; Kumar et al., 2017);
student networks with fewer parameters that learn from a larger teacher model (model distillation)
(Hinton et al., 2015); and finally pruning by setting a subset of weights or filters to zero (Louizos
et al., 2017; Wen et al., 2016; Cun et al., 1990; Hassibi et al., 1993a; Ström, 1997; Hassibi et al.,
1993b; Zhu & Gupta, 2017; See et al., 2016; Narang et al., 2017). Articulating the trade-offs of
compression has overwhelmingly centered on change to overall accuracy. Our contribution, while
limited in scope to model compression techniques that prune deep neural networks, is the first work
to our knowledge to propose a formal methodology to evaluate the impact of pruning in deep neural
networks at a class and exemplar level is non-uniform

We find that PIE is far more challenging to classify for both pruned and non-pruned models. Leverag-
ing this subset of data points for interpretability purposes or to cleanup the dataset fits into a broader
and non-overlapping body of literature that aims to classify input data points as prototypes – “most
typical” examples of a class – ((Carlini et al., 2019; Stock & Cisse, 2017)) or outside of the training
distribution (OOD) (Hendrycks & Gimpel, 2016; Lee et al., 2018; Liang et al., 2018; Lee et al., 2018;
Masana et al., 2018) and work on calibrating deep neural network predictions (Lakshminarayanan
et al., 2017; Guo et al., 2017; Kendall & Gal, 2017).

3.1 METHODOLOGY (INTRODUCING NOTATION)

We consider a supervised classification problem where a deep neural network is trained to approximate
the function F that maps an input variable X to an output variable Y , formally F : X 7→ Y . The
model is trained on a training set of N images D = {(xi, yi)}Ni=1, and at test time makes a prediction
y∗i for each image in the test set. The true labels yi are each assumed to be one of C categories or
classes, such that yi = [1, ...., C].

A reasonable response to our desire for more compact representations is to simply train a network
with fewer weights. However, as of yet, starting out with a compact dense model has not yet yielded
competitive test-set performance. Instead, current research centers on training strategies where
models are initialized with “excess capacity” which is then subsequently removed through pruning.

A pruning method P identifies the subset of weights to remove (i.e. set to zero). A pruned model
function, F̂t, is one where a fraction t ∈ [0.0, 1.0] of all model weights are set to zero. Equating
weight value to zero effectively removes the contribution of a weight as multiplication with inputs no
longer contributes to the activation. A non-pruned model function, F̂0, is one where all weights are
trainable (t = 0). At times, we interchangeably refer to F̂t and F̂0 as sparse and non-sparse model
functions (where the level of pruning is indicated by t).
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Figure 4: We conducted a human study of the relative distribution of PIE and non-PIE properties.
PIE over-indexes significantly on images where multiple classes are visible in the same image and
images with incorrect ground truth. Challenging exemplars: images positively codified as showing
common image corruptions such as blur or overlaid text, or images where the object is in the form
of an abstract representation or where the exemplar requires fine grained classification. Poorly
specified task: images where multiple classes are visible in the same image, or images with incorrect
or insufficient ground truth.

3.2 EXPERIMENT SETUP

We train for 32, 000 steps (approximately 90 epochs) on ImageNet with a batch size of 1024 images
and for 80, 000 steps on CIFAR-10 with a batch size of 128. For ImageNet, the baseline non-pruned
model obtains a mean top-1 accuracy of 76.68% and mean top-5 accuracy of 93.25% across 30
models. For CIFAR-10, mean baseline top-1 accuracy is 94.35%.

3.3 MAGNITUDE PRUNING

There are various pruning methodologies that use the absolute value of the weight as way to rank
importance and remove from the network weights that are below a user specified threshold. This
is often over the course of training; training is punctuated at certain pruning steps and a fraction of
weights are set to zero. Many different magnitude pruning methods have been proposed (Collins
& Kohli, 2014; Guo et al., 2016; Zhu & Gupta, 2017) that largely differ in whether the weights are
removed permanently or can “recover” by still receiving subsequent gradient updates. This would
allow certain weights to become non-zero again if pruned incorrectly. While magnitude pruning is
often used as a criteria to remove individual weights, it can be adapted to remove entire neurons or
filters by extending the ranking criteria to a set of weights and setting the threshold appropriately.
Recent work on evolutionary strategies has also leveraged an interative version of magnitude pruning
(Mocanu et al., 2018).

In this work, we use the magnitude pruning methodology proposed by Zhu & Gupta (2017). Pruning
is introduced over the course of training and removed weights continue to receive gradient updates
after being pruned. For ImageNet, each model trains for a total of 32, 000 steps. We prune every 500
steps between 1, 000 and 9000 steps. For CIFAR-10, we train the model for 80000 steps. We prune
every 2000 steps between 1000 and 20000 steps. These hyperparameter choices were based upon a
limited grid search which suggested that these particular settings minimized degradation to test-set
accuracy across all pruning levels. At the end of training, the final pruned mask is fixed and during
inference only the remaining weights contribute to the model prediction.

3.4 HUMAN STUDY

A qualitative inspection of PIEs suggests that these hard-to-generalize-to images tend to be of lower
image quality, mislabelled, entail abstract representations, require fine-grained classification or depict
atypical class examples. We conducted a limited human study (involving 85 volunteers) to label a
random sample of 1230 PIE and non-PIE ImageNet images. A balanced sampled PIE and non-PIE
were selected at random and shuffled. The classification as PIE or non-PIE was not known or available
to the human labels. We broadly group the properties we codify as indicative of 1) the exemplar
being challenging or 2) the task being ill-specified. We introduce these groupings below (after each
bucket we report the percentage of PIEs and non-PIEs in each category as a fraction of total PIEs and
non-PIE codified):
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class label gender label young label # non pie # pie non pie pct pie pct pct growth
blonde male old 57 5 0.29 6.58 2168.97
blonde male young 115 3 0.58 3.95 581.03
blonde female young 1932 29 9.72 38.16 292.59
blonde female old 513 6 2.58 7.89 205.81

non blonde female young 8344 26 41.96 34.21 -18.47
non blonde female old 1395 2 7.01 2.63 -62.48
non blonde male old 2868 2 14.42 2.63 -81.76
non blonde male young 4662 3 23.44 3.95 -83.15

Table 1: We consider the CelebA dataset where there is a correlation between protected demographic
attributes codified in the data (young and gender) and the target label (blonde, non-blonde). If
reducing capacity amplified the dependence of the model on spurious correlations, we would expect
to see PIEs over-index on the spurious correlation. We show that PIEs do indeed do with, with far
more blonde old males than non-blonde young males. We measure this as the relative percent growth
in share of each attribute combination in PIE vs non-PIE.

Fraction Pruned Top 1 # Signif classes # PIEs
0 94.53 - -

0.3 94.47 1 114
0.5 94.39 1 144
0.7 94.30 0 137
0.9 94.14 2 216

Table 2: CIFAR-10 top-1 accuracy at all levels of pruning, averaged over runs. Top-5 accuracy
for CIFAR-10 was 99.8% for all levels of pruning. The fourth column is the number of classes
significantly impacted by pruning.

1. Poorly specified task
• ground truth label incorrect or inadequate – images where there is not sufficient

information for a human to arrive at the correct ground truth label. [12% of non-PIEs,
22% of PIEs]
• multiple-object image – images depicting multiple objects where a human may con-

sider several labels to be appropriate (e.g., an image which depicts both a paddle and
canoe, desktop computer consisting of a screen, mouse and monitor, a
barber chair in a barber shop). [40% of non-PIE, 62% of PIEs]

.
2. Challenging Exemplars

• fine grained classification – involves classifying an object that is semantically close
to various other class categories present the data set (e.g., rock crab and fiddler
crab, bassinet and cradle, cuirass and breastplate). [7% of non-PIEs,
41% of PIEs]
• image corruptions – images exhibit common corruptions such as motion blur, contrast,

pixelation. We also include in this category images with super-imposed text, an artificial
frame and images that are black and white rather than the typical RBG color images in
ImageNet. [13% of non-PIE, 11% of PIE]

• abstract representations – the surfaced exemplar depicts a class object in an abstract
form such a cartoon, painting, or sculptured incarnation of the object. [4% of non-PIE,
4% of PIE]

Questions codified for every image considered:

Does label 1 accurately label an object in the image? (0/1)

Does this image depict a single object? (0/1)
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Fraction Pruned Top 1 Top 5 # Signif classes # PIEs
0 76.68 93.25 - -

0.30 76.46 93.17 69 1,819
0.50 75.87 92.86 145 2,193
0.70 75.02 92.43 317 3,073
0.90 72.60 91.10 582 5,136

Table 3: ImageNet top-1 and top-5 accuracy at all levels of pruning, averaged over all runs. The
fourth column is the number of classes significantly impacted by pruning.

Figure 5: Visualization of pruning identified exemplars (PIE30) for the CIFAR-10 dataset. This
subset of impacted images is identified by considering a set of 30 non-pruned wide ResNet models
and 30 models trained to 30% pruning. Below each image is three labels: 1) true label, 2) the modal
(most frequent) prediction from the set of non-pruned models, 3) the modal prediction from the set of
30% pruned models.

Would you consider labels 1,2 and 3 to be semantically very close to each other? (does this image
require fine grained classification) (0/1)

Do you consider the object in the image to be a typical exemplar for the class indicated by label 1?
(0/1)

Is the image quality corrupted (some common image corruptions – overlaid text, brightness, contrast,
filter, defocus blur, fog, jpeg compression, pixelate, shot noise, zoom blur, black and white vs. rbg)?
(0/1)

Is the object in the image an abstract representation of the class indicated by label 1? [[an abstract
representation is an object in an abstract form, such as a painting, drawing or rendering using a
different material.]] (0/1)
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true: blonde hair blonde hair not blonde blonde hair blonde hair
baseline model: not blonde not blonde blonde hair not blonde blonde hair
pruned model: blonde hair blonde hair blonde hair not blonde not blonde

Table 4: A selection of CelebA PIEs. Below each image: the ground truth label, the most frequent
non-pruned prediction and most frequent pruned prediction (across models trained to 50% pruning).

Table 5: We independently train a population of pruned and non-pruned models and apply the t-test
to determine whether the means of the samples differ significantly. At all levels of pruning, some
classes are impacted far more than others (classes that are statistically significant indicated by pink vs.
the classes in grey where the relative change in performance is not statistically significant). We plot
both the absolute % change in class recall (grey and pink bars) and the normalized accuracy relative
to change in overall top-1 accuracy caused by pruning (grey and green markers).

12


	
	
	
	

	
	
	
	
	
	


