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ABSTRACT
Infants appear to actively build models of their environment by attending to stimuli in a
highly non-random manner. In this work, we study how to design such a curiosity-driven
Active World Model Learning (AWML) system. To do so, we construct a curious agent
building world models while visually exploring a 3D physical environment rich with
distillations of representative real-world agents. We propose an AWML system driven
by γ-Progress: a scalable and effective learning progress-based curiosity signal. We
show that γ-Progress naturally gives rise to an exploration policy that directs attention to
complex but learnable dynamics in a balanced manner, as a result overcoming the “white
noise problem”. As a result, our γ-Progress-driven controller achieves significantly
higher AWML performance than state-of-the-art baselines.

1 INTRODUCTION

Infants appear to actively build models of their environment by attending to stimuli in a highly non-random
manner (Smith et al., 2019; Gergely et al., 1995; Frankenhuis et al., 2013). With the aim of building
a neural agent that can do the same, we study Active World Model Learning (AWML) – the problem
of determining a directed exploration policy that enables efficient construction of better world models.
(see Appendix B for formal definition) To do so, we construct a progress-driven curious neural agent
performing AWML in a custom-built 3D virtual world environment. Specifically, our contributions are
as follows: (1). We construct a 3D virtual environment rich with agents displaying a wide spectrum of
realistic stimuli behavior types with varying levels of learnability, such as static, periodic, noise, peekaboo,
chasing, and mimicry. (2). We propose an AWML system driven by γ-Progress: a novel and scalable
learning progress-based curiosity signal. We show that γ-Progress gives rise to an exploration policy
that overcomes the white noise problem (Schmidhuber, 2010) and achieves significantly higher AWML
performance than state-of-the-art exploration strategies — including Random Network Distillation (RND)
(Burda et al., 2018) and Model Disagreement (Pathak et al., 2019).

Related Works: A natural class of world models involve forward dynamics prediction. Action-
conditioned forward models can be used directly in planning for robotic control tasks (Finn & Levine,
2017), as performance-enhancers for reinforcement learning tasks (Ke et al., 2019), or as “dream” environ-
ment simulations for training policies (Ha & Schmidhuber, 2018). A key question the agent is faced with
is how to choose its actions to efficiently learn the world model. One approach is to pursue novelty, e.g
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Figure 1: Virtual environment. Our 3D virtual environment is a distillation of key aspects of real-world
environments. The curious agent (white robot) is centered in a room, surrounded by various external
agents (colored spheres) contained in different quadrants, each with dynamics that correspond to a realistic
inanimate or animate behavior (right box). The curious agent can rotate to attend to different behaviors as
shown by the first-person view images at the top. See https://bit.ly/31vg7v1 for videos.
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Figure 2: Active World Model Learning with γ-Progress The curious agent consists of a world model
and a progress-driven controller. Both the new (black) and old (gray) models take as input object-oriented
features xt−τin:t and predict x̂t:t+τout . The old model weights, θold, are slowly updated to the new model
weights θnew. The controller, πφ, is optimized to maximize γ-Progress reward, i.e L(θold)− L(θnew).

count-based and pseudo-count-based methods (Strehl & Littman, 2008; Bellemare et al., 2016; Ostrovski
et al., 2017), Random Network Distillation (RND) (Burda et al., 2018), and empowerment (Mohamed
& Rezende, 2015). Another fundamental approach is to use adversarial curiosity, which take actions
estimated to maximize world model prediction error (Stadie et al., 2015; Pathak et al., 2017; Haber et al.,
2018). However, adversarial curiosity is especially prone to the white noise problem, in which agents
are motivated to waste time fruitlessly trying to solve unsolvable world model problems. (Schmidhuber,
2010) Estimating learning progress (Oudeyer et al., 2007; 2013; Achiam & Sastry, 2017) or information
gain (Houthooft et al., 2016) avoids the white noise problem in a more comprehensive fashion. However,
such methods have been limited in scope because they involve high computational costs. In this work, we
present a novel method for estimating learning progress in a computationally scalable fashion.

2 VIRTUAL WORLD ENVIRONMENT

We design our 3D virtual environment to preserve the following key properties of real-world environments:
diverse dynamics, i.e containing various agent-specific programs, partial observability, information
limited to what lies within view, and interactivity, agent’s actions influence the world. Our virtual
environment consists of two main components, a curious neural agent and various external agents.

The curious neural agent, embodied by an avatar, fixed at the center of a room (Figure 1). Just as a
human toddler can control her gaze to visually explore her surroundings, the agent is able to partially
observe the environment based on what lies in its field of view (see top of Figure 1). The agent can
choose from 9 actions: rotate 12◦, 24◦, 48◦, or 96◦, to the left/right, or stay in its current orientation. The
external agents are spherical avatars that each act under a policy inspired by real-world inanimate and
animate stimuli. An external agent behavior consists of either one external agent, e.g reaching, or two
interacting ones, e.g chasing. Since external agents are devoid of surface features, the curious agent must
learn to attend to different behaviors based on spatiotemporal kinematics alone. We experiment with
external agent behaviors (see Figure 1, right) including static, periodic, noise, reaching, chasing, peekaboo,
and mimicry. (See Appendix A for details) The animate behaviors have deterministic and stochastic
variants, where the stochastic variant preserves the core dynamics underlying the behavior, albeit with
more randomness. See https://bit.ly/31vg7v1 for video descriptions of the environment and
external agent behaviors.

We divide the room into four quadrants, each of which contains various auxiliary objects (e.g teddy bear,
roller skates, surfboard) and one external agent behavior. The room is designed such that the curious agent
can see at most one external agent behavior at any given time.

3 METHODS

We describe a practical instantiation of the two components of our curious neural agent: a world model
fitting the forward dynamics and a progress-driven controller which acts to maximize γ-Progress reward.

World Model. We assume that the agent has access to an oracle encoder e : O → X that maps an
image observation ot ∈ O to a disentangled object-oriented feature vector xt = (xextt ,xauxt ,xegot ) where
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xextt = (c̃t,mt) = (c̃t,1, . . . c̃t,next
,mt,1, . . . ,mt,next

) contains information about the external agents;
namely the observability masks mt,i (mt,i = 1 if external agent i is in curious agent’s view at time t, else
mt,i = 0) and masked position coordinates c̃t,i = ct,i if mt,i = 1 and else c̃t,i = ĉt,i. Here, ct,i is the
true global coordinate of external agent i and ĉt,i is the model’s predicted coordinate of external agent i
where i = 1, . . . , next. xauxt contains coordinates of auxiliary objects, and xegot contains the ego-centric
orientation of the curious agent. Our world model ωθ is an ensemble of component networks {ωθk}Ncc

k=1

where each ωθk independently predicts the forward dynamics for a subset Ik ⊆ {1, ..., dim(xext)} of the
input dimensions of xext corresponding to a minimal interdependent group in the world. For example,
xextt:t+τ,Ik

may correspond to the masked coordinates and observability masks of the chaser and runner
external agents for times t, t+ 1, ..., t+ τ . We assume {Ik}ncc

k=1 is given as prior knowledge but future
work may integrate disentanglement learning into our pipeline. A component network ωθk takes as
input (xextt−τin:t,Ik

, xauxt−τin:t , x
ego
t−τin:t , at−τin:t+τout

), where a denotes the curious agent’s actions, and
outputs x̂extt:t+τout,Ik

. The outputs of the component network are concatenated to get the final output
x̂extt:t+τout

= (ĉt:t+τout
, m̂t:t+τout

). The world model loss is:

L(θ,xt−τin:t+τout
,at−τin:t+τout

) =

t+τout∑
t′=t

Next∑
i=1

mt′,i · ‖ĉt′,i − c̃t′,i‖2 + Lce(m̂t′,i,mt′,i) (1)

where Lce is cross-entropy loss. We parameterize each component network ωθk with a two-layer Long
Short-Term Memory (LSTM) network followed by two-layer Multi Layer Perceptron (MLP). The number
of hidden units are adapted to the number of external agents being modeled.

Progress-driven Controller. We propose γ-Progress, a scalable progress-based curiosity signal which
approximates learning progress by the difference in the losses of an old model and a new model. The
old model weights, θold, lag behind those of the new model, θnew, with a simple update rule: θold ←
γθold + (1− γ)θnew, where γ is scalar mixing constant. The curiosity reward is:

R(xt) = L(θnew,xt−τin−τout:t,at−τin−τout:t)− L(θold,xt−τin−τout:t,at−τin−τout:t) (2)

Our controller πφ follows an ε-greedy sampling scheme with respect to a Q-function Qφ trained with the
curiosity reward in Eq. 2. Qφ is parametrized by a two-layer MLP with 512 hidden units that takes as
input xt−2:t and outputs estimated state-action values for all nine possible actions. Qφ is updated with the
DQN Mnih et al. (2013) learning algorithm.

4 RESULTS

We evaluate the AWML performance of γ-Progress on two metrics: end performance and sample
complexity. End performance is the inverse of the the final world loss after a larger number of environment
interactions, and intuitively measures the “consistency” of the proxy reward with respect to the true reward.
Sample complexity measures the rate of reduction in world model loss Lµ(θ) with respect to the number
of environment interactions. The samples from the validation distribution µ correspond to core validation
cases we crafted for each behavior. For details, see Appendix F. Experiments are run in the Mixture world
where the virtual environment is instantiated external agents spanning four representative types: static,
periodic, noise, and animate. This set up is a natural distillation of a real-world environment containing a
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Figure 3: AWML Performance. The animate external agent is varied across experiments according to
the column labels. Error bars/regions are standard errors of the best 5 seeds out of 10. γ-Progress achieves
lower sample complexity than all baselines on 7/8 behaviors. Notably, γ-Progress also outperforms all
baselines in end performance on 6/8 behaviors.
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Figure 4: Attention Patterns. Bar plots show total animate attention, i.e ratio between the number of time
steps an animate external agent was visible to the curious agent, and the time steps a noise external agent
was visible. Time series plots (zoom-in box) show the differences between mean attention to the animate
external agents and the mean of attention to other agents in a 500 step window, with periods of animate
preference highlighted in purple. Results averaged across 5 runs. γ-Progress displays strong animate
attention while baselines are indifferent, e.g δ-Progress, or fixating on white noise, e.g Adversarial.

wide spectrum of behaviors. We run separate experiments in which the animate external agents are varied
amongst the deterministic and stochastic versions of reaching, chasing, peekaboo, and mimicry agents
(see Section 2). We compare the AWML performance of the following methods:

γ-Progress (Ours) is our proposed variant of progress curiosity which chooses θold to be a geometric
mixture of all past models as in Eq. 11.

δ-Progress (Achiam & Sastry, 2017; Graves et al., 2017) is the δ-step learning progress reward from
Eq. 10 with δ = 1. We found that any δ > 3 is impractical due to memory constraints.

RND (Burda et al., 2018) is a novelty-based method that trains a predictor neural net to match the outputs
of a random state encoder. States for which the predictor networks fails to match the random encoder are
deemed “novel”, and thus receive high reward.

Disagreement (Pathak et al., 2019) is the disagreement based method from Eq. 6 with N = 3 ensemble
models. We found that N > 3 is impractical due to memory constraints.

Adversarial (Stadie et al., 2015; Pathak et al., 2017) is the prediction error based method from Eq. 5.
We use the `2 prediction loss of the world model as the reward.

Random chooses actions uniformly at random among the 9 possible rotations.

Fig. 3a shows end performance (first row) and sample complexity (second row) in the Mixture world. In
the Mixture world, we see that γ-Progress has lower sample complexity than δ-Progress, Disagreement,
Adversarial, and Random baselines on all 8/8 behaviors and outperforms RND on 7/8 behaviors while
tying on stochastic chasing. See https://bit.ly/31vg7v1 for visualizations of model predictions.

Figure 4 shows the ratio of attention to animate vs other external agents for each behavior in the Mixture
world as well as example animate-inanimate attention differential timeseries. The γ-Progress agents
spend substantially more time attending to animate agents than do alternative policies. This increased
animate-inanimate attention differential often corresponds to a characteristic attentional “bump” that
occurs early as the γ-Progress curious agent focuses on animate external agents quickly before eventually
“losing interest” as prediction accuracy is achieved. Strong animate attention emerges for 7/7 behaviors
when using γ-Progress. Baselines display two distinct modes that lead to lower performance (Figure 4,
bottom). The first is attentional indifference, in which it finds no particular external agent interesting.
δ-Progress frequently had attentional indifference as the new and old world model, separated by a fixed
time difference, were often too similar to generate a useful curiosity signal. The second failure mode is
white noise fixation, where the observer is captivated by the noise external agents. RND suffers from
white noise fixation due to the fact that our noise behaviors have the most diffuse visited state distribution.
We also observe that for noise behaviors, a world model ensemble does not collectively converge to a
single mean prediction, and as a result Disagreement finds the noise behavior highly interesting. Finally,
the Adversarial baseline fails since noise behaviors yield the highest prediction errors. The white noise
failure mode is particularly detrimental to sample complexity, with RND, Disagreement, and Adversarial,
as evidenced by their below-Random performance.
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Appendix - Active World Model Learning in Agent-rich
Environments with Progress Curiosity

A EXTERNAL AGENT BEHAVIORS

Below, we describe all behaviors in detail. Note that the animate behaviors (peekaboo, reaching, chasing,
and mimicry) are further sub-divided into deterministic and stochastic versions.

Inanimate behaviors

Static Inspired by stationary objects such as couches, lampposts, and fire hydrants, the static
agent remains at its starting location and stays immobile.

Periodic Inspired by objects exhibiting periodic motion such as fans, flashing lights, and clocks,
the periodic agent regularly moves back and forth between two specified locations in its
quadrant.

Noise Inspired by random motion in wind, water, and other inanimate elements, the noise agent
randomly samples a new direction and moves in that direction with a fixed step size while
remaining within the boundaries of its quadrant.

Animate Behaviors

Reaching (deterministic) We often exhibit goal-oriented behavior by interacting with objects.
The reacher agent approaches each auxiliary object in its quadrant sequentially, such that object
positions fully determine its trajectory. Objects periodically shift locations such that predicting
agent behavior at any given time requires knowing the current object positions.

Reaching (stochastic) The order in which the reacher agent visits the objects is stochastic
(uniform sampling from the three possible objects). However, once the reacher agent starts
moving towards an object, its trajectory for the next few time steps, before it chooses a different
object to move to, is predictable.

Chasing (deterministic) We often act contingently on the actions of other agents, which in turn
depend on our own. In chasing, a chaser agent chases a runner agent. If the runner is too close
to quadrant bounds, it then escapes to one of a few escape locations away from the chaser but
within the quadrant. Thus, the chaser’s position affects the runner’s trajectory and vice versa.

Chasing (stochastic) When the runner agent is too close to the quadrant bounds, it escapes by
picking any random location away from the chaser and within the bounds of the quadrant.

Peekaboo (deterministic) One way of detecting an animate agent is if its motion is contingent
on our own. The peekaboo agent acts contingently on the curious agent. If the curious agent
stares at it, it hides behind an auxiliary object such as a doll. If the curious agent continues to
stare, it starts peeking out by moving to a fixed peek location. If the curious agent looks away,
it stops hiding, returning to its exposed location.

Peekaboo (stochastic) There are multiple peeking locations near the hiding object that the
peekaboo agent can visit randomly during its peeking behavior.

Mimicry (deterministic) From an early age, we learn by imitating others. Mimicry consists of
an actor agent and an imitator agent, each staying in one half of the quadrant to avoid collisions.
The actor acts identically to the random agent, while the imitator mirrors the actor’s trajectory
with a delay, such that the past trajectory of the actor fully determines the future trajectory of
the imitator.
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Mimicry (stochastic) The imitator agent is imperfect and produces a noisy reproduction of the
actor agent’s trajectory.

B THEORY

In this section we formalize Active World Model Learning (AWML) as a Reinforcement Learning (RL)
problem that is a specific form of active learning. We then discuss a number of curiosity signals that
can be used to drive AWML, and introduce γ-Progress, a scalable progress-based measure with several
algorithmic and computational advantages over previous signals.

B.1 ACTIVE WORLD MODEL LEARNING

We formalize an agent in environment as the tuple E := (S,A, P, P0). S denotes the set of states the
agent and environment can be in — in the virtual world environment described in section 2, S captures
the gaze direction of the curious agent, the positions and type of external objects, and the positions
and internal states of the external agents1. A represents the set of actions the agent can take, and are
constrained by the physical avatar of the agent — in the virtual world, the choice of how far and where to
turn its gaze. Transition dynamics are given by the function P : S ×A → Ω(S), where Ω(S) is the set
of probability measures on S (allowing for stochastic environment dynamics). In the case of our virtual
world, P captures both the effect of the gaze actions of the agent (e.g. changes in which part of the scene
is being observed), as well the dynamics of each of the external agents. The function P0 : S → [0, 1]
describes the probability distribution of initial conditions of states.

In this environment, the agent’s overall goal is to learn a target function ω with as few data samples as
possible. In general, ω can be any predictor on finite-horizon state-action trajectories sampled from the
environment. That is, ω : X → Ω(Y), where X := Sis ×Aia and Y := Ω(Sos ×Aoa) represent sets of
fixed-length observation-action sequences. (The non-negative integers is, ia, os, and oa are the input and
output state and action horizons, respectively.) In this work, we work with forward prediction, i.e. the
situation where X = S ×A,Y = S , and ω = P 2, but a variety of other potentially useful targets, such as
inverse prediction, can also be formulated by appropriate choice of X ,Y and ω.

The agent seeks to estimate a parameterized model ωθ of ω (e.g θ are parameters deep neural network; see
section 3 below). We henceforth refer to ωθ as the world model. To measure its error during world model
optimization, the agent is equipped with a loss function L : (x, f, g) 7→ R such that for any x ∈ X and
any functions f, g : X → Ω(Y), L(x, f, g) achieves its minimum whenever f(x) = g(x). A measure µ
over X representing a validation data distribution is also specified, so that the agent’s learning goal is to
minimize Lµ(θ) := Eµ[L(θ)] =

∫
X L(x, ω(x), ωθ(x))µ(x)dx.

The agent learns the world model from data gathering by acting in the environment. We formally define
Active World Model Learning as a Markov Decision Process (MDP)M := (S̄, Ā, P̄ , P̄0, r) with state
and action spaces S̄, Ā, dynamics and initial conditions P̄ , P̄0, and reinforcement reward function r.
Because intrinsically-motivated policies (such as progress curiosity) will critically depend on states of
the agent’s world model,M is an augmentation of the environment E that is constructed by adding the
data-collection and model parameter history of the agent itself.

Specifically, the augmented state space S̄ := S ×H×Θ, so that s̄ ∈ S̄ has the form s̄ = (s, H, θ). s ∈ S
is an environment state, H = (s0,a0, s1,a1 . . .) ∈ H is the history of environment state-actions visited
so far, and θ ∈ Θ is the current model parameters. The action space Ā := A is simply the same set of
actions available to the agent in the environment3. The dynamics are described by P̄ : S̄ × A → Ω(S̄),
which step s according to the environment dynamics P , augment the history with new data, and updates

1Our virtual world environment is partially observable and hence requires the additional specification of O, the
set of observations, and Q = Q(o|s,a), the set of conditional observation probabilities. For the sake of simplicity,
we suppress this complication in the main text and point out where it is salient in a series of footnotes.

2In a partial observable case such as ours, the agent predicts observations from a sequence of past observations,
which contains additional state information (e.g. the direction an external agent is moving) relevant to predicting the
next observation. This state information can be incomplete (e.g. if an external agent is invisible until the observation
to be predicted), leading to what might be thought of as additional white noise, or degeneracy in the world model
problem (Haber et al., 2018).

3In the partial observability case, the action choice determines not only the state transition but also what is
observable each timestep, and hence the agent should keep the interesting in view. The MDP becomes a POMDP, where
we assume that the agent has full access to its internal state and history, so augmented observations ō ∈ Ō = O×H×Θ
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the world model ωθ on the augmented history. Formally this is described by the sampling procedure:

(s′, H ′, θ′) ∼ P̄ (·|s̄ = (s, H, θ),a) where s′ ∼ P (s,a), H ′ = H ∪ {a, s′}, θ′ ∼ P`(H ′, θ)

where P` : H ×Θ→ Ω(Θ) is (stochastic) update rule for the world model parameters, e.g. a (stochastic)
learning algorithm which updates the parameters on the history of data. The initial conditions P̄0(s̄ =
(s, H, θ)) = P0(s)1(H = {})q(θ) is the augmented initial-distribution where 1 is the indicator function
and q(θ) is a prior distribution over the model parameters.

The function r encodes the learning objective of the agent as an RL reward. A policy is a map π : S →
Ω(A) from states to action distributions. In general, the infinite-horizon RL problem is to find an optimal
policy π∗ = arg maxπ J(π), where J(π) = Eπ[

∑∞
t=0 β

trt] and 0 ≤ β < 1 is a discount factor. The
goal of AWML in specific is to make effective data-collection decisions to minimize world model loss.
This could in theory by accomplished by taking the reward function of AWML to be

r(s̄,a, s̄′) = −Lµ(θ′),

where s̄ = (s, H, θ), s̄′ = (s′, H ′, θ′) and θ′ = P`(H ∪ {a, s′}, θ) is the updated model parameters after
collecting new data {a, s′}. Given the definition of total reward J , this is equivalent, up to monotonic
transform, to the reward function:

r(s̄,a, s̄′) = Lµ(θ)− Lµ(θ′). (3)

Defined thusly, r(s̄,a, s̄′) measures the reduction in world model loss as a result of obtaining new data
{a, s′}, i.e the prediction gain.

By appropriately constructingM, different variants of traditional active learning can be recovered as
AWML problems. For example, Query Synthesis Active Learning (Settles, 2011) is obtained by taking
S = Y,A = X , and P (·|·,a = x) = ω(x). In words, the agent proposes a synthetic data query a and
the oracle P provides a label s′. Other traditional active learning tasks can also be derived, including
pool-based and stream active learning (see Appendix C for details).

However, there are several complications making it challenging to use equation 3 directly. First, µ can
be a rather diffuse distribution which makes it intractable to compute equation 3 at every environment
step. This is especially problematic in the types of environments of interest here and in other recent works
on curiosity-driven learning, relative to the more constrained situations of traditional active learning.
Secondly, in cases in which an agent explores an unknown environment, µ is not even known prior to
interacting with the environment. These bottlenecks necessitate an efficiently-computable heuristic reward
function that will typically promote the same learning goal of equation 3 — constructing a learning dataset
that minimizes the loss Lµ — while being independent of any particular choice of µ. The literature on
algorithmic curiosity has explored many variants of such heuristic “curiosity signals”, which achieve
consistency with the learning goals of equation 3 with varying degrees of accuracy and efficiency. A
spectrum of such ideas, including our novel proposal (γ-Progress), are described in the next section.

B.2 CURIOSITY SIGNALS

We now motivate γ-Progress by outlining the limitations of previously proposed curiosity signals and
highlighting the computational and algorithmic advantages of our method.

Information Gain (Houthooft et al., 2016; Linke et al., 2019) based methods seek to minimize uncertainty
in the Bayesian posterior distribution over model parameters:

r(s̄,a, s̄′) = DKL(p(θ′)||p(θ)) (4)

where p(θ′) = p(θ|H ∪ {a, s̄′}) and p(θ) = p(θ|H). Note that, information gain is a lower bound to the
prediction gain under weak assumptions (Bellemare et al., 2016). If the posterior has a simple form such
as Laplace or Gaussian, information gain can be estimated by weight change |θ′ − θ| (Linke et al., 2019),
and otherwise one may resort to learning a variational approximation q to approximate the information
gain with DKL(q(θ′)||q(θ)) (Houthooft et al., 2016). The former weight change methods require a model
after every step in the environment and is thus impractical in many settings where world model updates
are expensive, e.g. backpropagation through deep neural nets. The latter family of variational methods
require maintenance of a parameter distribution and an interlaced evidence lower bound optimization and
are thus impractical to use with modern deep nets (Achiam & Sastry, 2017).

has the form ō = (o,H, θ), where o ∈ O (augmented conditional observation probabilities Q̄ are similarly derived
from Q).
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Adversarial (Stadie et al., 2015; Pathak et al., 2017; Haber et al., 2018) curiosity assumes prediction gain
is proportional to the current world model loss, which, for forward prediction AWML with negative log
likelihood loss, is

r(s̄,a, s̄′) = − logωθ(s
′|s,a). (5)

This assumption holds when the target function ω is learnable by the model class Θ and the learning algo-
rithm P` makes monotonic improvement without the need for curriculum learning. However, adversarial
reward is perpetually high when the target is unlearnable by the model class, e.g. deterministic model ωθ
cannot match stochastic target ω on inputs x for which ω(x) is not a Dirac-delta function. As a result,
the curious agent suffers from the white noise problem (Schmidhuber, 2010), i.e it endlessly fixates on
unlearnable stimuli.

Disagreement (Pathak et al., 2019) assumes future world model loss reduction is proportional to the
prediction variance of an ensemble of N world models {Pθj}Nj=1.

r(s̄,a, s̄′) = Var({ωθj (s′|s,a)}Nj=1) (6)

This approximation is reasonable when there exists a unique optimal world model. As we will show, for
complex target functions all members of the ensemble do not converge to a single model and as a result
the white noise problem persists. A key limitation of this method is that memory usage grow linearly with
size of the model ensemble. Disagreement-based curiosity is known as query by committee sampling
(Seung et al., 1992) in active learning.

Novelty (Bellemare et al., 2016; Dinh et al., 2016; Burda et al., 2018) methods reward transitions with a
low visitation count N (s, a, s′). The prototypical novelty reward is:

r(s̄,a, s̄′) = N (st, at)
−1/2 (7)

Bellemare et al. (2016) generalize visitation counts to pseudocounts for use in continuous state, action
spaces. Novelty is a good surrogate reward when one seeks to maximize coverage over the transition
space regardless of the learnability of the transition. This characteristic makes novelty reward prefer noisy
data drawn from a high entropy distribution. Novelty reward is not adapted to the world model and thus
has a propensity to be inefficient at reducing world model loss.

Progress (Schmidhuber, 2010; Achiam & Sastry, 2017; Graves et al., 2017) The key idea is to simply
approximate the expectation involving µ in equation 3 with the prediction gain on the history.

r(s̄,a, s̄′) = LH′(θ)− LH′(θ′) (8)

where H ′ is the augmented history after adding (s̄,a, s̄′). There is no guarantee the optimal policy with
respect to equation 8 is also an optimal policy with respect to equation 3 for every choice of µ. However,
we expect this history-based approximation of prediction gain to generate a data distribution that will be
suitable for a wide array of µ. If we think of the target ω as having easy, hard but doable, and impossible
instances (x,y), we expect such an agent to spend some time sampling easy, a good deal of time sampling
the hard but doable, and little time on the impossible. For µ with support on easy data, little sampling is
needed; for support on hard but doable, the greater proportion of samples is useful; and support on the
impossible does not contribute to Equation 3. Intuitively (if not formally), the progress curiosity approach
should thus yield a data distribution that is proportionate to the intrinsic learnability of the target ω.

To ensure that the data generated and acted upon by equation 8 be a representative sample of the possible
distribution of states — i.e. is as effective an approximation of prediction gain as possible — it is useful
to pool data across multiple timepoints, including as the world model itself changes. This comes at the
cost, however, of requiring access to model parameters at those multiple timepoints. Ensuring reliable
and efficient approximation of progress requires careful choices of how often to update θ′ and how to
integrate information across multiple updates.

One approach to such choices is given by δ-progress (Achiam & Sastry, 2017; Graves et al., 2017),
measures how much better the current “new” model θnew is compared to an old model θold, which, for
forward prediction AWML, is

r(s̄,a, s̄′) = log
ωθ′(s

′|s,a)

ωθ(s′|s,a)
' log

ωθnew
(s′|s,a)

ωθold(s′|s,a)
. (9)

Recall that µ is ideally a distribution whose support is learnable data with respect to model class Θ. There
are two steps of approximation in equation 9. The first step assumes that training on a sample (s,a, s′)
affects the total validation loss on learnable data µ only through the reduction in loss on that particular
sample. The second step assumes that future prediction gain is close to past prediction gain measured
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with respect to θnew, θold. The choice of θnew, θold is crucial to the efficacy of the progress reward. A
popular approach (Achiam et al., 2017; Graves et al., 2017) is to choose

θnew = θk, θold = θk−δ, δ > 0 (10)

where θk is the model parameter after k update steps using P`. Intuitively, if the progress horizon δ is too
large, we obtain an overly optimistic approximation of future progress. However if δ is too small, the
agent may prematurely give up on learning hard transitions, e.g. where the next state distribution is very
sharp. In practice, tuning the value δ presents a major challenge. Furthermore, the widely pointed out
(Pathak et al., 2019) limitation of δ-Progress is that the memory usage grows O(δ), i.e one must store δ
world model parameters θk−δ, ..., θ. As a result it is intractable in practice to use δ > 3 with deep neural
net models.

Here we propose γ-Progress, the following choice of θnew, θold to overcome both hurdles faces by
δ-progress:

θnew = θ, θold = (1− γ)

k−1∑
i=1

γk−1−iθ0 (11)

In words, the old model is a weighted mixture of past models where the weights are exponentially decayed
into the past. γ-Progress can be interpreted as a noise averaged progress signal. Conveniently, γ-Progress
can be implemented with a simple θold update rule:

θold ← γθold + (1− γ)θnew (12)

Similar to equation 10, we may control the level of optimism towards expected future loss reduction
by controlling the progress horizon γ, i.e a higher γ corresponds to a more optimistic approximation.
γ-Progress has key practical advantages over δ-Progress: γ is far easier to tune than δ, e.g. we use a single
value of γ throughout all experiments, and memory usage is constant with respect to γ. Crucially, the
second advantage enables us to tune the progress horizon so that the model does not prematurely give up
on exploring hard transitions. The significance of these practical advantages will become apparent from
our experiments.

C CONNECTIONS BETWEEN GENERAL ACTIVE LEARNING AND CONVENTIONAL
ACTIVE LEARNING

Query Synthesis Active Learning is obtained by taking S = Y,A = X , P (·|·,a = x) = ω(x) and
c(s̄ = (s, H, θ),a, s̄′ = (s′, H ′, θ′)) = Lval(θ)−Lval(θ′). In words, the agent proposes a synthetic data
query a and the oracle P provides a label s′. The agent’s objective is to reduce validation loss with a
minimal number of data queries. Most active learning methods take a greedy approach to maximize the
model loss reduction after a single data query which corresponds to setting β = 0.

Pool-based Active Learning is the same as Query Synthesis Active Learning with the only difference
being A = Dpool where Dpool is the initial pool of unlabelled data.

Stream Active Learning is obtained by choosing S = X × Y,A = {0, 1}, P (·|s = (x,y),a) =
ω(x) if a = 1 else δ(ydum), and c(s̄ = (s, H, θ),a, s̄′ = (s′, H ′, θ′)) = Lval(θ)− Lval(θ′), where δ is
the Dirac-delta function and ydum is a dummy label that denotes the case when no label is returned by the
oracle.

D WORLD MODEL ARCHITECTURE ABLATION AND DISENTANGLEMENT

To evaluate the importance of disentanglement in world model architecture, independently of controller
choice, we produce datasets for offline training for each task (excluding peekaboo, since the behavior is
dependent on the observer’s choices, no policy-independent offline training dataset can be constructed).
We then train the world model to convergence. We compare the loss of our disentangled world model to
an entangled LSTM architecture that instead takes as input and predicts all external agents together. As
seen in Figure 5, the disentangled architecture significantly outperforms the entangled ablation.

Intuitively, the disentangled architecture performs better because it ignores spurious correlations between
causally-unrelated events in the agent’s data stream. Formalizing this intuition and explaining why this
is particularly salient in our current environment, in contrast to some other situations (Locatello et al.,
2018), is an important future direction. Interestingly, the disentangled architecture shares a key feature
with the concept known as Theory of Mind, which involves the ability to predict the behaviors of other
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agents as a function of inferred mental states, such as beliefs, desires, and goals Astington et al. (1990);
Premack & Woodruff (1978); Wellman (1992). A core, though often unstated, assumption behind Theory
of Mind is the agent-centric allocation of computational resources. Our disentangled model builds this
in as a key feature, suggesting that at least one possible function of Theory of Mind may be to enable
statistical disentangling. This certainly requires considerable follow-up work to substantiate.

E TRAINING DETAILS
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Figure 5: Asymptotic Model Performance Final
performance of the disentangled world model and
entangled ablations.

As shown in Algorithm ??, we interleave world
model and policy updates while interacting with
the environment. Specifically we update the both
the world model and Q-network with 10 gradi-
ent steps per 40 environment steps. Both model
updates begin after the buffer is filled with 1000
samples.

World Model: We parameterize each component
network ωθk with a two-layer Long Short-Term
Memory (LSTM) network with 256 hidden units if
|Ik| = 1 i.e., the causal group k contains a single
external agent, and 512 if |Ik| ≥ 2 to ensure that the size of the parameter space scales with the input and
output size. All networks are train using Adam with a learning rate of 1e-4, β1 = 0.9, β2 = 0.999 and
batch size 256.

The old model is synchronized with the new model weights once after 100 world model updates. This
"warm starts" the old model and prevents unreasonable large progress rewards at the start. We use a fixed
value of the progress horizon γ = 0.9995 across all experiments. We found that any 0.9995 ≤ γ ≤ 0.9999
attains similar results.

Policy Learning: For Q-network Qφ updates we use the DQN algorithm (Mnih et al., 2015) with a
discount factor of β = 0.99, a boostrapping horizon of 200, a buffer size of 2e5. Same as the world
model, we train the Q-network using Adam with a learning rate of 1e-4, β1 = 0.9, β2 = 0.999 and batch
size 256. The policy πφ is an ε-greedy exploration strategy with respect to Qφ. Specifically, ε is linearly
decayed from 1.0 to 0.025 at a rate of 0.0001 per environment step.

F VALIDATION CASES

Here we describe validation protocol for each behavior. As data for the world model must be generated by
interacting with the environment, what policy to use during validation is an important choice. As some
behaviors are "interactive", i.e the external agent dynamics depend on the curious agent’s actions, a naive
policy that simply stares at the external agent may not elicit the core dynamics underlying the behavior.
Thus, we hard-code the policy during validation to elicit the core dynamics for behavior and subsequently
measure world model loss on the collected data.

Peekaboo: The validation policy looks at the peekaboo external agent until it hides. The policy then
keeps the peekaboo external agent in view so that when the agent "peeks" it immediately hides again.
The validation loss measures the world model performance on predicting the dynamics of this peeking
behavior which is representative of the core “interactive” nature of peekaboo.

Reaching: At the start of validation, auxiliary objects are spawned at new locations which changes the
trajectory of the reaching external agent. The validation policy then stares at the reaching external agent
and validation loss is measured on the collected samples. This validation loss measures how well the
world model has learned the contingency between the auxiliary object locations and the reaching external
agent’s movements. For example, a world model that has overfit to the external agent’s trajectory for a
particular set of auxiliary object locations will fail to generalize when auxiliary objects are spawned at
new locations.

Chasing, Mimicry, Periodic, Static, Noise: The validation policy simply stares at the external agents
and validation loss is measured on the collected samples.

The validation losses shown in Figure 3a for the Mixture world is an average of the validation losses on
the static, periodic, and animate external agents. The random agent is excluded from evaluation as there
is virtually no learnable patterns in the behavior and averaging the large world model loss incurred on
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the random external agent could occlude the learning performance differences between curiosity signals
on the other learnable external agents. For the Noise World, the shown validation losses in Figure 3b
represent only the validation loss on the animate external agent.

G NOISE WORLD ATTENTION
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Figure 6: Attention Patterns in Noise World. The bar plot shows the total animate attention, which
is the ratio between the number of time steps an animate external agent was visible and the number of
time steps a noise external agent was visible. The zoom-in box plots show the differences between mean
attention to the animate external agents and the mean of attention to the other agents in a 500 step window,
with periods of animate preference highlighted in purple. Results are averaged across 5 runs. γ-Progress
displays strong animate attention while baselines are either indifferent, e.g δ-Progress, or fixating on white
noise, e.g Adversarial.

H FURTHER ATTENTION ANALYSES

Here we provide details of the early indicator analysis (Section ??) and a regression of what factors
(curiosity signal, architecture, external agent behavior) best predict animate/inanimate attention ratios.

H.1 DETAILS OF EARLY INDICATOR ANALYSIS

We look to predict final performance Pfinal of a given agent, which we take to be the average of the final
four validation runs. To make the modeling problem simple, we discretize this into a classification task
by dividing validation performance into 3 equal-sized classes (“high”, “medium”, and “low”, computed
separately for each external agent behavior), intuitively chosen to reflect performance around, at, and
below that of random policy.

We consider two predictive models of final performance, one that takes as input early attention of the
agent, and the other, early performance. Early performance may be quantified simply: given time T
(“diagnostic age”) during training, let P≤T be the vector containing all validation losses measured up to
time T . Early attention, however, is very high-dimensional, so we must make a dimensionality-reducing
choice in order to tractably model with our modest sample size. Hence, we “bucket” average. Given
choice of integer B, let

A≤T,B = (f anim
0: TB

, f rand
0: TB

, f anim
T
B : 2TB

, f rand
T
B : 2TB

, . . . f anim
(B−1)T

B :T
, f rand

(B−1)T
B :T

), (13)

where f anim
a:b and f rand

a:b are the fraction of the time t = a and t = b spent looking at the animate external
agent and random external agents respectively (so A≤T,B is the attentional trajectory up to time T
discretized into B buckets).

Finally, both models must have knowledge of the external agent behavior to which the agent is exposed
— we expect this to both have an effect on attention as well as the meaning of early performance and
expected final performance as a result. Let χBHR be the one-hot encoding of which external animate
agent behavior is shown.

We then consider models
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Table 1: Attention regression. Regression model of animate/noisy attention, according to Equation 14.
Coefficient values found, and uncorrected p-value for 2-sided t-tests, with significance at the .05 level in
bold.

COEFFICIENT VALUE P > |T|

CONSTANT .80 .001
γ-PROGRESS 2.24 .000
δ-PROGRESS .08 .788
RND -.53 .064
DISAGREEMENT -.70 .014
ADVERSARIAL -.79 .006

CAUSAL ARCHITECTURE .014 .959

STOCHASTIC REACHING .14 .493
DETERMINISTIC CHASING .25 .222
STOCHASTIC CHASING .45 .029
DETERMINISTIC PEEKABOO -.08 .682
STOCHASTIC PEEKABOO .02 .920
MIMICRY .56 .006

CAUSAL ×γ-PROGRESS -.32 .408
CAUSAL, ×δ-PROGRESS .06 .868
CAUSAL × RND .03 .935
CAUSAL × DISAGREEMENT .23 .555
CAUSAL × ADVERSARIAL -.09 .813

1. PERF≤T , which takes as input P≤T and χBHR, and
2. ATT≤T , which takes as input A≤T,B and χBHR.

Figure ??b shows the plot of PERF≤T and ATT≤T accuracy as T varies. We see that, up to a point,
ATT≤T makes a better predictor of final performance, and then PERF≤T dominates. This confirms the
intuition that attention patterns precede performance improvements. Intuitively, early attention predicts
performance by being able to predict the sort of curiosity signal the agent is using, which predicts the full
timecourse of attention (see H.2), which in turn predicts performance.

H.2 DETERMINANTS OF ATTENTION PATTERN

To gain a finer-grained understanding of what, of the factors we vary (curiosity signal, world model
architecture, and stimulus type) drives the attentional behavior of these active learning systems, we
perform a linear regression. Specifically, we regress

Ranimate/noisy = a+ b · χCS + cχcausal + d · χBHR + χcausal ∗ e · χIM + ε (14)

Here Ranimate/noisy is the ratio of animate to noisy attention, χCS is a one-hot encoding of curiosity
signal (all zeros if random policy), χcausal is an indicator set to 1 if the architecture is causal, χBHR is
a one-hot encoding of animate external agent behavior shown (all zeros if deterministic reaching), and
a, b, c, d, e are fixed effects (e measures an interaction effect).

Over 371 individual active learning runs, an ordinary least squares regression achieves an adjusted R2 of
.44. Please see Table 1 for details. We found that γ-Progress receives significant positive weight, while
Disagreement and Adversarial receive significant negative weight, with the other curiosity signals having
an effect close to that of random policy. In addition, we fail to find a significant effect due to architecture
and most external agent behaviors, with two external agent behavior exceptions. In sum, we find that,
of the architectural and curiosity signal variations we tested, curiosity signal strongly drives behavior
whereas architecture plays an insignificant role.
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