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ABSTRACT

Convolutional neural networks (CNNs) have proven effective as models of visual
responses in the inferior temporal cortex (IT). The belief has been that training a
network for visual recognition leads it to represent discriminative features similar
to those the brain has learned. However, a CNN’s response is affected by its ar-
chitecture and not just its training. We therefore explicitly measured the effect of
training different CNN architectures on their representational similarity with IT.
We evaluated two versions of AlexNet and two training regimes, supervised and
unsupervised. Surprisingly, we found that the representations in a random-weight
variant of AlexNet, reflect brain representations in IT better than the benchmark
supervised AlexNet and also better than the corresponding network trained in ei-
ther a supervised or unsupervised manner. These results require a re-evaluation of
the explanation of why CNNss act as an effective model of IT.

1 INTRODUCTION

When a human or non-human primate sees an object, activity cascades from the primary visual
cortex at the back of the brain forwards through a set of regions to the inferior temporal (IT) cor-
tex, leading to object recognition. The best current models of IT activity use convolutional neural
networks (CNNs) pre-trained for object recognition (Lindsay} 2020) - often AlexNet trained on Im-
ageNet (Khaligh-Razavi & Kriegeskorte, [2014; |Giiclii & van Gerven, 2015} |Cichy et al.l |2016).
Trained CNNs have been found to reflect the processing hierarchy in the brain, with representations
in earlier layers more similar to those in the primary visual cortex and later layers with IT (Yamins
& DiCarlol [2016; |Giiclii & van Gerven, 20155 |Cichy et al., 2016, Wen et al., 2018)). During train-
ing, CNNs learn discriminative features, which emphasise inter-class differences while becoming
invariant to within-class variation (Achille & Soattol [2017). It has often been assumed that the cor-
respondence of pre-trained CNNs with IT happens because they learn similar discriminative features
to the brain (Yamins & DiCarlo, |2016; |Lindsayl 2020). However, while this idea is seductive, rep-
resentations in CNNs are shaped not just by trained weights but also by model architecture (Pinto
et al., 2009). For example, there is evidence that random networks can extract visual features that
are surprisingly effective for visual recognition tasks (Saxe et al., 2011} Gaier & Hal [2019; Jarrett
et al., 2009). But, are such features present in IT? Furthermore, although the correspondence be-
tween the brain and trained network representations has been tested in supervised training regime
we lack information about the effects of unsupervised training regime on the networks’ activation
patterns. Here we aim to distinguish the effects of training and architecture, by calculating the simi-
larity of representations in a random CNNs with the brain, and by testing how training changes the
correspondence between the CNNs and IT. The results suggest that architecture may play a larger
role than training for some CNNGs.

*www.cusacklab.org; code and data available at: https://annatruzzi.github.io/BrainVsCNNs/



Published as a workshop paper at “Bridging Al and Cognitive Science” (ICLR 2020)

2 CHOICE OF NETWORKS, TRAINING, AND ANALYSIS

Standard AlexNet. We used the standard AlexNet architecture (Krizhevsky et al.| 2012) from
torchvision.models, as used in previous studies (Khaligh-Razavi & Kriegeskorte| 2014} |Giicli & van
Gerven, 20155 |Cichy et al., 2016). The model was trained on ImageNet (top 1-accuracy: 56.55) and
was not fine-tuned to the 92 visual stimuli. We examined representations at the five convolutional
layers and the two fully connected layers.

DeepCluster with unsupervised training. As unsupervised algorithm, we evaluated DeepClus-
ter (Caron et al., [2018)), trained on ImageNet and not fine-tuned to the 92 visual stimuli (top 1-
accuracy from 5Sth convolutional layer: 36.1). The underlying convolutional network of DeepCluster
is an AlexNet architecture (Krizhevsky et al.,|2012) modified for unsupervised learning (Caron et al.
(2018), with the local response normalisation layers removed and batch normalisation used instead
(loffe & Szegedyl [2015) and an initial linear transformation based on Sobel filters applied on the
input to remove colour and increase local contrast.

DeepCluster AlexNet with supervised training. Any difference in the results between standard
AlexNet architecture and DeepCluster might be due either to their difference in architecture or to
the different training process, supervised vs unsupervised. To control for this, we repeated the
experiments using the same AlexNet variant as in DeepCluster, but trained on ImageNet with a
supervised regime and not fine-tuned to the 92 visual stimuli (top 1-accuracy: 35.9).

Comparison with the brain. Activity in response to 92 images, as used by [Khaligh-Razavi &
Kriegeskorte| (2014)), was measured in the CNNs and in the brains of 15 adults. In the CNNs we
recorded activity at the output to the ReLU of the five convolutional layers and the two fully con-
nected layers. For each CNN layer, we characterised the representations through the representational
dissimilarity matrix (RDM) (Diedrichsen & Kriegeskorte, |2017; |[Khaligh-Razavi & Kriegeskorte,
2014). For the brain, we used the human IT RDMs provided by Cichy et al.| (2019). The correlation
between each CNN layer’s RDM and each human subject’s RDM was calculated using the Mantel
procedure with 10,000 permutations and the Kendall’s Tau as the correlation statistic. The use of
Kendall’s Tau is recommended because, being a rank correlation coefficient, it does not assume the
presence of a linear relationship between the RDM values (Khaligh-Razavi & Kriegeskortel 2014),
and because it proved to be more likely than Spearman’s Rho to prefer the true model over a sim-
plified categorical model (Nili et al.,[2014)). A repeated-measures ANOVA was then calculated with
the Kendall’s Tau values from every subject as the dependent variable and the network type and
layer as within-subject factors. As post-hocs, Student’s t-tests were used to calculate whether the
corresponding layers of different CNNs correlated with IT to a different extent, and whether within
each CNN the representation in the last layer better correlated to IT compared with the first layer.
Moreover, the noise ceiling of the MRI data was calculated in order to evaluate the amount of vari-
ability that a model could possibly explain. The calculation of the noise ceiling shows how much of
the data variability is explained by our model by taking into account the noise intrinsic in the MRI
data. If the correlation between the model and the MRI data is close to the noise ceiling, the model
explains the data well (Khaligh-Razavi & Kriegeskorte}, [2014)).

3 RESULTS

Between networks. Surprisingly, we found that representations within the random DeepCluster
correlated with the brain as well as or better than the trained standard AlexNet [Figﬂ}s] (Network:
F(1,14) = 6.51, p <0.05; Layer: F(6,84) = 10.45, p <0.001 ; Network x Layer: F(6,84) = 5.87,
p <0.001). Post-hoc tests showed that representations within layers 1, 2, 3, and 5 of the random
DeepCluster performed significantly better than the corresponding layers in the trained standard
AlexNet (for the five layers #(28)=3.43, 2.73, 2.57, 1.25, 2.38, 0.75, 0.73; p <0.01, 0.05, 0.05, ns,
0.05, ns, ns. The random DeepCluster was overall a better model of IT than the trained AlexNet.
These results show that the architecture of a CNN can extract visual features that partially explain
the variance of the brain. However, training could still improve the correlation between the CNN
and the brain representations. We therefore tested how the three CNNs correlated with the brain
before and after training [Fig[2]]. Training significantly improved the correlation between standard
AlexNet activations and IT representations (Network: F(1,14) =29.18, p <0.001; Layer: F(6,84) =
7.25, p <0.001 ; Network x Layer: F(6,84) = 14.53, p <0.001). Specifically a significant improve-
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Figure 1: (a) The patterns of response evoked by an object in the neural network and the brain. (b)
Some objects evoke more similar patterns than others. (c) The representation of the network can
be characterised by its representational dissimilarity matrix (RDM) in which darker colours denote
pairs of objects that evoked more dissimilar responses. (d) The representation of the brain can be
characterised in the same way. The correlation between these two RDMs can then be calculated, to
compare the similarity of the representations of the network and brain. (e) Results of the correlation
between each subject’s RDM and each networks’ layer RDMs. The blue dashed line represents the
correlations with the random DeepCluster. The green solid line represents the correlations with the
trained standard Alexnet. The grey band represents the noise ceiling for the MRI data

ment happened in all the layers but the first one (Standard AlexNet: #(28)= 1.59, 3.47, 2.29, 3.76,
3.28,4.62, 5.41; p <ns, 0.01, 0.05, 0.001, 0.01, 0.001, 0.001). In contrast, in the modified AlexNet
training resulted in a significant worsening of the network correlation with the IT cortex, both for
the unsupervised (Network: F(1,14) =9.17, p <0.001; Layer: F(6,84) = 8.30, p <0.001 ; Network
x Layer: F(6,84) = 14.07, p <0.001) and supervised learning strategies (Network: F(1,14) =6.93, p
<0.05; Layer: F(6,84) = 10.88, p <0.001 ; Network x Layer: F(6,84) =23.77, p <0.001). Specifi-
cally, DeepCluster layers 1, 2, 3, and 4 correlated significantly less strongly with I'T’s representation
after training (DeepCluster: #(28)= -2.36, -3.88, -3.13, -3.45, -2.02, -0.43, 0.42; p <0.05, 0.001,
0.01, 0.01, ns, ns, ns). In the modified AlexNet, this was true for layers 2, 3, 4, and 5 (DeepCluster
AlexNet supervised: #(28)=-2.01, -4.84, -3.14, -2.30, -2.36, 0.45, 0.47; p <ns, 0.001, 0.01, 0.05,
0.05, ns, ns).

Correspondence of Hierarchy Between Brain and CNN Layers Within networks. A hierarchical
correspondence between the network and the brain has been previously observed. We therefore
expected that after training, the upper layer would show a higher correlation with IT than the first
layer. This was indeed found for all the trained networks - Standard AlexNet (Trained: #(28): 3.28,
p <0.001; Random: #(28): -0.78, ns), DeepCluster (Trained: #(28): 3.49, p <0.01; Random: #28):
1.20, ns), and the modified AlexNet (Trained: #(28): 3.61, p <0.01; Random: #(28): 1.60, ns).
However, while in the standard AlexNet the difference between the first and last layer was driven
by an improvement in the last layer, in the modified AlexNet architecture, either unsupervised or
supervised, the difference was driven by a worsening in the correlation between the first layer and
IT representations.

4 DISCUSSION

Here we showed that the representations elicited by a visual stimuli in an random network may
correlate with the IT cortex activity patterns more strongly than in a trained network. Moreover,
in some cases the training process can worsen, rather then improve, the correspondence between
the network and the brain. These surprising results suggest that the architecture of some CNNs,
rather than the weights learned during the training process, might most strongly explain their ex-
planatory power for activity in IT. However, none of the architectures, either trained or random,
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Figure 2: Results of the correlation between each subject’s RDM and each network layer’s RDMs.
The dashed lines represent the correlations with the random networks. The solid lines represent the
correlations with the trained networks. None of the models reached the noise ceiling (for reference
see figure 1). (a) Correlations between the brain and standard AlexNet. (b) Correlations between the
brain and DeepCluster. (c) Correlations between the brain and the modified AlexNet.

reached the noise ceiling. This means that IT is representing some feature of the images which is
not currently captured by the considered models. Although the difference between the model and
noise ceiling is different from the original ones in [Khaligh-Razavi & Kriegeskorte| (2014)), a correc-
tion has been published that makes them similar to ours (Storrs et al., 2020). A possible limitation
of our analysis is that we used only representational similarity analysis (RSA) to compare CNNs
and the brain. Some results may not generalise to an alternative measures. However, a key previ-
ous study to find a correspondence between CNNs and the brain also used RSA (Khaligh-Razavi &
Kriegeskorte, [2014). Moreover, a recent study using single-cell electrophysiology in the mouse and
an encoding model, found that random weights performed similarly in predicting brain activity as
trained weights (Cadena et al., [2019). This suggests that the unreasonable effectiveness of random
weighs generalises to quite a different experiment. Another possible limitation is that the DeepClus-
ter model included a “hand-crafted” Sobel edge-detection front end. However, previous evidence
suggests that this alone cannot explain brain representations. |Khaligh-Razavi & Kriegeskorte| (2014)
tested many hand-crafted visual-feature extraction methods, including an edge detector, and found
they performed substantially less well than AlexNet. In light of our unexpected findings, we may
need to reconsider two aspects of how CNNs predict the brain. First, we found that the architecture
of CNNss contributes substantially to their brain-like representations. Therefore, a relatively quick
architecture search may be as important as the lengthy and computationally expensive training pro-
cess, in developing good models of the brain. Second, the features that CNNs learn during training
can sometimes drive them away from the way the brain represents the world rather then bringing it
closer. Finding ways to encourage CNNs to learn other features, such as global shape rather than
texture (Geirhos et al., |2019) might make their representations more brain-like. In the future we
will also obtain the brain-score of each network through the online platform (Schrimpf et al.|[2018).
Improving our understanding of the network training process is likely to impact both neuroscience
and Al In neuroscience we need testable computational models to investigate how the brain learns
in both typical and atypical developmental contexts. On the other hand, making the networks’ learn-
ing process more similar to how the human brain learns may improve performance of the network
and effectiveness of the training, for example by shrinking the size of the necessary data sets and
shortening training time.
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