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ABSTRACT

We consider multiple agents using different strategies to compete for resources
with a diverse distribution of rewards. Statistical theory shows that two kinds of
equilibria are possible: (1) where some agents “settle” on a fixed resource while
others visit diverse sites, and (2) where all agents pursue a similar strategy of visit-
ing diverse sites. The first equilibrium shows a highly skewed reward distribution;
in the second equilibrium most agents are similarly successful. We show that a
population of agents can learn these equilibrium strategies through reinforcement
learning. In conventional Q-learning, the population of agents learns the equilib-
rium strategy with skewed rewards. If we add curiosity, an intrinsic motivation
to explore, Q-learning converges faster, and produces the second equilibrium in
which most agents get similar average rewards. Thus, curiosity increases equality.

1 INTRODUCTION

We consider multiple agents competing for resources that

provide diverse rewards. In such systems, the incen- ”

tives provided to agents and constraints on their behavior

can dramatically change population dynamics and out-

comes. For example, constraints on agent demand can @ @

force the population to a Pareto optimal equilibrium (Mat- @

suda et al.l [2010). |Domansky & Kreps| (2002) show

that private preferences of individual agents can signifi- ” *
cantly impact the population resource distribution. Mu-

latier et al. (2020) demonstrate that in over-crowded con-
ditions, competition can lead to significant inequality in Figure 1: Agents can be either “at
average rewards that individuals receive at equilibrium. o0 (brown box) or “out” occupy-
Here, we implement a reinforcement learning approach ing one of the resource locations (blue
to competitive resource allocation. We show that a popu- spots). Each location m provides an ex-
lation of such agents can learn an ensemble of strategies (rinsic reward rm > 0. An agent trying
leading to the equilibrium in [Mulatier et al.[ (2020), and an occupied location receives a nega-
that, additionally, greater equality in reward results when  (ye reward —c < 0 (see red highlighted
agents are “curious”, i.e. when they have an additional
intrinsic motivation to explore.

agent).

Curious behavior can be quantified in different ways (Schmidhuber, [2010;|1990; 1991}; Jaegle et al.}
2019), and is typically induced by incentivizing novelty seeking or learning progress, where the
latter can be measured in terms of information gain. Information gain is approximated by Houthooft
et al.|(2016) by using a Bayesian neural network and by|Osband et al.| (2016)) and |Pathak et al.|(2019)
by measuring disagreements in an ensemble of models. Novelty seeking is induced by |Pathak et al.
(2017);Burda et al.| (2018) by giving agents an intrinsic reward for visiting states yielding high model
error. Bucher et al.|(2019);|Achiam & Sastry| (2017) propose the use of Bayesian surprise measured
by the negative log-likelihood of observed data conditioned on the model as another approach to
novelty seeking curious behavior. Bellemare et al.| (2016); |Ostrovski et al.| (2017); |Kearns & Singh

* Denotes equal author contribution.
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(2002) all present variations of a count-based exploration bonus in which a bonus is given for visiting
less visited states. We consider count-based curiosity, the simplest form of introducing exploration
incentives to the competitive resource allocation problem. Thus, we use the discrete version of
count-based curiosity in the system we consider here in order to most directly analyze the impact of
curiosity on dynamics.

We demonstrate that agents using a count-based curiosity reward achieve faster convergence to a
more equal distribution of rewards across agents than agents following a greedy strategy in a com-
petitive resource allocation task.

2 RESOURCE ALLOCATION PROBLEM FORMULATION

2.1 THE SYSTEM

Consider a system with N agents competing for N discrete resource locations, which provide differ-
ent payoffs and can be occupied by one agent at a time only. Agents can be either “home” or “out”
occupying one of the locations (see Fig.[I). The ratio of the rate at which agents go out and the rate
at which they go back home is the control parameter 7, and the probability to find an agent out at any
time of the simulation is therefore p°* = /(1 + n). When an agent goes out it chooses a location
m to visit based on its own strategy, which it learns during the simulation. If the chosen location
is available, then the agent receives the positive extrinsic rewards r,, provided by the location. If
instead the location turns out to be already occupied, then the agent receives a negative extrinsic
reward denoted —c and must try another location. Agents thus incur a cost for visiting occupied
spots.

Agent behavior in this system is defined by the strategy they use to decide which location to go
to. In prior work, equilibrium strategies of the agents were studied in the case where agents aim
to maximize their expectation of extrinsic rewards. In this work, we compare the strategies learned
by such greedy agents to the strategies learned by curious agents who choose the locations to visit
based on both the extrinsic reward provided by the resources and an intrinsic reward they receive for
exploring new resources. We compare the dynamics of the two systems during the learning process
and study how it impacts the equilibrium strategies of the agents and their final expected rewards.

2.2 CURIOUS VERSUS GREEDY AGENTS

An agent’s learning process can be described as a batched
version of Q-learning. An agent’s value function V' (k) @ @ R

is updated at the end of each episode, where an episode

starts when the agent leaves home and ends when it finds
a first available location (see Fig. [2). At the end of the
k-th episode agent A; updates the function V' using: Figure 2: Example of a trajectory per-

formed by agent A; during an episode:

Vi (k) = (k—1) anz(k - 1)+ R;n(k) ) A; leaves home, tries location 6 and 5
m k ’ both occupied, and finds the available

where R! (k) is the total extrinsic rewards accumulated location 2. During this episode, the to-
b ; . . . . tal extrinsic reward received by A; af-
y A; during a trajectory after trying location m until the

. . . 1 _ _
episode ends. If the location is not tried during the k-th ter trying locatlop 6 is R.6 = T2 .20’
. i . whereas after trying location 2 it is sim-
episode, R%, (k) = 0, otherwise

, ply B3 =ra.
Ry (k) = rm; —jm(k) * c, 2)

where 7, , is the reward received at the final location of the trajectory, and j,, (k) is the number of
locations tried along the trajectory . The constant j,, (k) ¢ is the cost associated with visiting j,,, (k)
occupied locations.

The value function V;} (k) is an estimate of the average extrinsic reward that agent A; expects to
get by trying location m in the competitive system; this estimate being learnt during the k previous
episodes performed by A;. At the beginning of each new episode, the greedy agent chooses the
locations to try based on its current estimate of Vi (k). The locations having the highest values in
the value function are explored first. The curious agent however, balances the extrinsic exploitation
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Figure 3: Evolution of the probability of occupancy Eq. (4) of each location during the learning (a)
for a population of greedy agents; (b) for a population of curious agents with parameter A = 0.5.
Snapshots of the occupancy profile are displayed at successive 10” learning episodes. Simulations
were performed with parameters N = 1000, n = 2, ¢ = —1, and a linear distribution of the payoffs
between r; = 10 and 1000 = 1. Locations are labeled by decreasing reward value, r,,, > 7,41 for
all location m. The dashed line indicates the occupancy probability of locations that are exclusive
to a single agent: py,: = 1/(1 4+ 1) ~ 0.666 for our simulation with n = 2.

reward of greedy agents with an intrinsic exploration reward. In this work, exploration is encouraged
using a count-based curiosity first proposed in a general form by |Kearns & Singh| (2002). The value
function for the curious agent can then be defined by W, (k):

Wi (k) = Vi (k) + e MVn®) 3)

where N} (k) is the current number of times agent A; has visited spot m and ) is a parameter con-
trolling the decay rate of curiosity. At each new episode the curious agent A; chooses the locations to

try based on the value function W, (k). The asymptotically decreasing function e~ M (k) ensures
that the intrinsic reward asymptotically reaches zero for sufficiently large N}, (k).

3 EXPERIMENTAL RESULTS

For the system described in Sec. 2.1, [Mulatier et al.| (2020) found that some agents can establish
themselves as property owners of a single resource and thus earn larger payoffs than other agents.
They showed that such behavior is allowed theoretically and can emerge naturally during learning.
Such systems admit Nash equilibria without property owners, as well as equilibria with coexistence
of property owners and other “nomadic” agents (who exploit more than one resource, but earn lower
payoffs). Here, we show these equilibria can be discovered by reinforcement learning, and that
incentivizing exploration during learning promotes the emergence of agent communities with fewer
property owners, and, as a result, with less inequality.

3.1 COMPARISON OF THE OBSERVED LEARNING DYNAMICS

Figure[3]displays the evolution of the occupancy of each location during learning, with and without
curiosity. The occupancy probability of a location m is defined at any given time ¢ during the
simulation by:

Tocc(t)
t )

P[m is occupied at time ] = 4)
where T,..(t) is the total time location m has been occupied since the start of the simulation. The
presence of property owners can be identify on the occupancy profile, as locations owned by a single
agent have an occupancy probability exactly equal to the probability of that agent to be “out”, which
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is pout = 1/(1 + n) (see Sec. 2.1). This probability is highlighted by the dashed horizontal line on
both graphs of Fig.|3| For the greedy population (a), we observe the presence of multiple settlers
after 10® learning episodes in the intermediate range of locations between m = 700 and m = 900,
as indicated by the red dots overlapping with the horizontal dash line in that range. The curious

population (b) instead displays no, or very few property owners.

For both simulations in
Fig. [3] the value func-
tion was initialised to
Vi) = 1, for all
agents, which implies
that agents start with
an initial knowledge of
the system. Thus in the
greedy system (a), agents
explore first resources
with  highest  payoff
and then slowly spread
over Wworse resources,
displaying a  smooth
convergence of the oc-
cupancy profile. As a
result, only the exploited
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Figure 4: Left. Histograms of payoffs across agents after 10% iterations
for the simulations of Fig.|3| Right. Same histograms after subtracting
the mean payoff. Greedy agent reward statistics: mean (1.099), median
(0.986), IQR (0.313), variance (0.105). Curious agent reward statistics:
mean (0.597), median (0.536), IQR (0.115), variance (0.020).

resources are explored (locations ranging from m = 950 to m = 1000 are barely ever visited) and
this learning dynamics seems to facilitate the emergence of property owners. In contrast, in case (b),
curious agents rapidly spread over the entire system, the probability of occupancy of the locations
being almost flat at 10® episodes. Fig. then shows a sudden move to equilibrium starting around
107 episodes, as the curiosity exploration bonus becomes negligible. After exploring the entire
system, the whole population suddenly converges towards a stationary solution with almost no
property owner. The curious exploration has prevented the emergence of property owners and
promoted more equal payoff outcomes for the agents.

3.2 COMPARISON OF THE RESULTING EQUILIBRIUM STRATEGIES

Curiosity decreases the overall payoffs of the agents. Figure |4 compares the distribution of pay-
offs (average extrinsic rewards) across agents at equilibrium in the curious and greedy system re-
spectively. As an immediate result, we find that greedy agents have a higher mean and median
reward than the curious agents. By reducing the number of property owners in the system, curios-
ity decreases not only the payoff of the property owners, but also of all the agents of the popula-
tion. This also hints towards commonly seen communities of animals with specialists and general-
ists (Van Tienderen| (1991))), as having specialists increases the rewards of the entire community.

Curiosity increases equality. We also observe in Fig. [ that curious agents have a lower variance
and interquartile range (IQR), indicating greater equality in the system. In the context of an eco-
nomic system for instance, payoffs can be considered money with which agents may buy goods and
services. The real value of money measured against purchasing power for goods and services is de-
termined by the relationship between the amount of money an agent has relative to the other agents.
As visualized by the normalized payoffs in Fig. 4] the real value of money for agents with curiosity
is higher as well as being more equally distributed.

4 CONCLUSION

Here we introduced curiosity as a form of intrinsic reward for exploration in a competitive resource
allocation problem. We experimentally compared the learning dynamics of this system with another
whether agents only receive rewards by exploiting resources. Future work includes exploring more
complex curiosity reward functions based on the agent’s model of the environment.
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