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ABSTRACT

Research seeking to build artificial systems capable of reproducing elements of human
intelligence may benefit from a deeper consideration of the architecture and learning
mechanisms of the human brain. In this brief review, we note a connection between many
current challenges facing artificial intelligence and the functions of a particular brain area —
the prefrontal cortex (PFC). This brain area is known to be involved in executive functions
such as reasoning, rule-learning, deliberate or controlled processing, and abstract planning.
Motivated by the hypothesis that these functions provide a form of out-of-distribution
robustness currently not available in state-of-the-art AI systems, we elaborate on this
connection and highlight some computational principles thought to be at work in PFC,
with the goal of enhancing the synergy between neuroscience and machine learning.

1 INTRODUCTION

Deep learning, which has historically taken inspiration from the brain, has had unexpected and massive success
in many applications. Though much progress has been made, new advances will be needed to meet the substan-
tial challenges remaining on the path toward recreating the most powerful aspects of human intelligence. State-
of-the-art methods remain inferior to human learners in their ability to transfer knowledge to new domains (Lake
et al., 2017), to capture compositional or systematic structure (Lake & Baroni, 2018), to plan efficiently (Ham-
rick, 2019), and to reason abstractly (Bhagavatula et al., 2019; Xu et al., 2020). All of these abilities share simi-
larities with the collection of human capacities known as executive functions, and are often associated with con-
scious processing, i.e., they can be reported verbally by human subjects. The human brain must embody prin-
ciples lacking in current deep learning systems that allow it to perform these powerful functions. This has led
some to consider the possibility of taking inspiration from the architecture of the human brain to build more flex-
ible learning systems (Marblestone et al., 2016; Hassabis et al., 2017). Here, we observe an intriguing correspon-
dence between some of the current open questions in deep learning research and the functions of the human pre-
frontal cortex (PFC), a brain area known to be involved in executive functions such as planning (Duncan, 1986),
abstract reasoning (Donoso et al., 2014), rule-learning (Wallis et al., 2001), and controlled or deliberate process-
ing (Miller & Cohen, 2001). We explore this connection, and the potential of translating what is known about
this brain area into architectural assumptions or inductive biases in deep learning (Marblestone et al., 2016;
Battaglia et al., 2018). First, we elaborate on some of the current challenges in deep learning research mentioned
above, and then briefly survey some findings from neuroscience about the PFC, noting connections to these cur-
rent challenges. We then discuss some theoretical ideas about PFC function from cognitive and computational
neuroscience, with the aim of stimulating a fruitful synergy between neurocience and deep learning research.

2 THE NEED FOR NEURAL NETWORKS WITH EXECUTIVE FUNCTIONS

Current deep learning methods excel in perceptual tasks in which complicated patterns must be recognized
in high-dimensional data. However, no one yet knows how to build learning machines which fare well on
tasks that require deliberate, controlled processing over multiple steps or dealing with changes in distribution
(Bengio, 2017; 2019; Lake et al., 2017; Marcus, 2018). In the following, we highlight some of the aspects
of human cognition that have so far proven difficult for neural networks to reproduce, and have become
active areas of research in deep learning.

Reasoning Bottou (2011) offers a helpful working definition of reasoning as “algebraically manipulating
previously acquired knowledge in order to answer a new question.” What this definition entails is the reuse
of dynamically selected computational modules, with the results of recently produced computations feeding
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the currently selected computation. Most of the tasks at the center of the rise of deep learning (e.g., object
recognition, video-game playing, machine translation) generally do not require reasoning, i.e., algebraic
manipulation of existing knowledge. Current neural nets involve composition of functions (e.g. layers) but in
a fixed order. Recently, there has been growing interest and much progress on datasets and tasks that require
reasoning over multiple steps (e.g. Bhagavatula et al., 2019; Johnson et al., 2017; Graves et al., 2016; Hudson
& Manning, 2019; Weston et al., 2015; Xu et al., 2020; Barrett et al., 2018), with some cases of systems
surpassing human performance (e.g. Hudson & Manning, 2018; Perez et al., 2018; Yi et al., 2018). However,
as we discuss in the next section, most models trained on these tasks still fail to “answer new questions”,
in the sense of generalizing outside of the training distribution (Barrett et al., 2018; Bahdanau et al., 2019a).

Compositionality and systematicity It has been argued that one of the most powerful aspects of human
cognition is its systematicity: concepts can be composed in novel ways, so that the number of expressible
combinations grows exponentially in the number of primitive concepts learned (Fodor & Pylyshyn, 1988; Lake
et al., 2017; Lake & Baroni, 2018). This topic is closely related to reasoning, because “algebraic manipulation”
requires that existing knowledge be represented in a form that is systematically composable. Interest in
compositionality among deep learning researchers has grown over the past few years, where experiments
have revealed that standard approaches in deep learning show weak generalization for compositions of known
elements which are unlikely under the training distribution (Lake & Baroni, 2018; Bahdanau et al., 2019b;a;
Keysers et al., 2020, but see also Hill et al. 2020). These experiments show that standard architectures fail
to capture the compositional structure or systematic rules governing the data-generation process.

Control in novel environments Just as standard deep networks have weaker generalization outside of
their training distribution in the settings described above, they are less efficient than humans at transferring
knowledge about learned environments to novel ones (Hagendorff & Wezel, 2019; Kansky et al., 2017; Lake
et al., 2019b; 2017). For example, when trained on the Atari games, the generalization of standard methods in
deep reinforcement learning is not robust to slight changes in the rules of the game or the layout of the inputs
(Kansky et al., 2017). Generalization to novel environments has continued to be an important topic in deep
learning research, where an increased focus on one-shot learning (e.g. Vinyals et al., 2017), transfer (Weiss et al.,
2016), and meta-learning (e.g. Finn et al., 2017; Bengio et al., 2019) has emerged. Much progress has been
made in these areas, but human-level transfer remains elusive (Lansdell & Kording, 2019; Griffiths et al., 2019).

Abstract planning It has long been recognized that the standard planning algorithms used in model-based
reinforcement learning (RL) are too computationally expensive to be useful in many real-world domains
(Barto & Mahadevan, 2003), and that humans and other animals seem to possess planning strategies that avoid
much of this computational cost (Botvinick, 2008; Botvinick et al., 2009). In particular, it has been suggested
that humans plan using temporally abstract representations, whereas model-based algorithms usually treat
each time-step independently (Botvinick et al., 2009; Botvinick & Weinstein, 2014). The most successful
algorithms in deep RL are model-free (Arulkumaran et al., 2017; Hamrick, 2019), and though model-based
deep RL methods have had some recent success (Corneil et al., 2018; Finn & Levine, 2017; Nagabandi
et al., 2018; Feinberg et al., 2018), most still plan each time step individually or lack the abstraction and
compositionality displayed in human planning (Hamrick, 2019).

3 SOME FUNCTIONS OF THE PREFRONTAL CORTEX

All of the challenges described above have been noted by others, and are active areas of research. The
first of our main contributions is to draw connections between them and the functioning of the human PFC.
The PFC comprises a large swath of the most anterior portion of the cerebral cortex and appears to have
undergone a disproportionate amount of development over the course of human evolution (Schoenemann
et al., 2005; Rilling, 2006; Semendeferi et al., 2001; Falk, 2012). It receives highly processed, multimodal
information from perceptual areas, and sits at the top of the decision-making hierarchy (Fuster, 2009; Hunt
& Hayden, 2017; O’Reilly et al., 2012). Much remains unknown about the PFC, and in particular there
is ongoing investigation into functional differentiation between different areas within it (e.g. Hunt et al., 2018).
However, it has been argued that much of the PFC retains a canonical computational role, with functional
differentiation among subareas emerging due to differences in connectivity (Miller & Cohen, 2001; O’Reilly,
2010; Thompson-Schill, 2004). Here we highlight some aspects of the general functionality of the PFC.

Reasoning One of the most well-established findings about the PFC is that it is specialized for working
memory, or the ability to maintain and manipulate information over short periods of time (Fuster & Alexander,
1971; Kubota & Niki, 1971; Miller & Desimone, 1994; Goldman-Rakic, 1995; Sommer & Wurtz, 2000; Lara
& Wallis, 2015). Working memory can be seen as an important aspect of the capacity to reason, as it allows
for 1) computation on information that is not currently observable in the environment, and 2) the integration
of intermediate results in a larger reasoning process (e.g., in a serial summation of a list of numbers; Menon,
2016). Indeed, evidence of prefrontal engagement has been found in many experiments investigating the
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neural underpinnings of human reasoning (Donoso et al., 2014), including deductive (Goel, 2007), inductive
(Crescentini et al., 2011), relational (Krawczyk et al., 2011), and analogical reasoning (Hampshire et al., 2011).

Representing abstract rules One domain in which humans excel at generalizing outside of the training dis-
tribution is the ability to apply known rules to novel elements (Lake et al., 2019a). The PFC has been found to be
important for success on tasks that require the induction, maintenance, updating, or application of rules (Mian
et al., 2014; Milner, 1963; Wallis et al., 2001; Shallice & Burgess, 1991). For example, patients with damage to
PFC struggle to sort cards according to a changing rule (e.g., color or shape) (Milner, 1963; Buchsbaum et al.,
2005; Berg, 1948). In a seminal electrophysiology study on rule application (Wallis et al., 2001), monkeys were
trained to either select the picture that was a ‘match’ to the previously presented one, or select the ‘nonmatch’.
Single neurons in PFC were found to respond when invoking such abstract rules, regardless of the particular
pictures presented on a given trial (Wallis et al., 2001). Some computational models (Rougier et al., 2005) have
attempted to capture this important property of the PFC, showing, e.g., how indirection might be implemented
in a canonical PFC circuit (Kriete et al., 2013, see also Hayworth & Marblestone 2018 and Müller et al. 2016).

Control in novel environments Overwhelming evidence implicates the PFC in decision-making and
control processes (Domenech & Koechlin, 2015; Miller & Cohen, 2001). However, it is in general not crucial
for the execution of habitual responses that have been trained extensively (as would be the case, e.g., in a
model that had played an Atari game for hundreds of hours) — rather, it is required for overriding these
habitual responses in novel situations, with new rules or in the pursuit of a novel goal (Miller & Cohen, 2001;
Botvinick & Cohen, 2014). This function, generally termed “cognitive control,” is illustrated well in studies
using the classic Stroop task (Stroop, 1935). In this task, participants are presented with color words (e.g., ‘red’,
‘blue’) written in colored ink, which may or may not match the words. Patients with damage to PFC perform
reliably poorly on this task, which requires them to override habitual responses (reading text) according to
the color-naming rule (Perret, 1974; Vendrell et al., 1995). In general, it is thought that the functioning of
the PFC is crucially important when a novel goal is being pursued in a familiar environment where habits
have become entrenched, or in novel environments when no such habits yet exist (Miller & Cohen, 2001).

Abstract planning Humans and other mammals demonstrate evidence of both model-free and
model-based RL (Momennejad et al., 2017; Daw et al., 2011; 2005), but the PFC has been implicated in
model-based RL in particular (Daw et al., 2005; Smittenaar et al., 2013). Humans with damage to the PFC can
exhibit deficits in routine behaviors that require planning and coordinating sequences of actions like cooking
or making coffee (Miller & Cohen, 2001; Levine et al., 1998; Duncan, 1986; Shallice, 1982). Some have
theorized that the planning processes in PFC are temporally abstract or hierarchical, as in, e.g., the options
framework (Sutton et al., 1999; Botvinick, 2008; Botvinick et al., 2009; Botvinick & Weinstein, 2014; Frank
& Badre, 2012). This idea accords well with experiments indicating that PFC represents actions at multiple
timescales simultaneously (Hunt & Hayden, 2017; Botvinick et al., 2009; Sarafyazd & Jazayeri, 2019).

4 COMPUTATIONAL PRINCIPLES AND LEARNING MECHANISMS IN PFC

The section above describing some of the functions of the PFC was structured to draw out their connection
to current challenges facing deep learning. However, the structure of this section is somewhat arbitrary, as
all of these functions are related to one another. Here, we cover some theoretical ideas about the underlying
computational mechanisms of PFC that can unify these various functions, with an eye toward principles
that may be transferable to deep learning.

Top-down attention and modulation In an influential framework, Miller & Cohen (2001) argue that
many of the cognitive capacities associated with the PFC, including reasoning, rule-learning, planning,
and cognitive control, can be explained by its role in top-down attentional modulation of other brain areas.
The PFC sends projections to much of neocortex, allowing it to modulate activity in other areas, possibly
according to a current goal or in agreement with currently conscious contents. In the Stroop task, e.g., the PFC
represents the instruction to name the colors rather than read the words, and modulates the activity of color
features in higher-order visual areas of the brain to bias behavior toward naming them (Miller & Cohen, 2001).

Top-down attentional modulation has some analogues in deep learning research. The use of attention has
become an increasingly popular approach in many tasks (e.g. Bahdanau et al., 2014; Xu et al., 2016; Hudson
& Manning, 2018). One major difference with these mechanisms may be that PFC is thought to modulate
activity through multiple brain areas at once, conditioned on the current goal. This kind of conditioning
may be more similar to HyperNetworks (Ha et al., 2016), FiLM (Perez et al., 2018), where the mapping
learned by a single feedforward network can be modulated with transformations at each layer, or RIM, which
tries explicitly to model a top-down attentional modulation mechanism (Goyal et al., 2019).

Recurrence, gating, and seriality Recurrence is ubiquitous in the brain, but the PFC has a special
role in maintaining information in working memory over longer timescales (Lara & Wallis, 2015). Work
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in computational neuroscience examining the detailed biological mechanisms that would allow PFC to
accomplish this has emphasized its interaction with the basal ganglia and the importance of LSTM-like
gating operations (O’Reilly & Frank, 2006). Although computations in the brain are massively parallelized,
the amount of information that can be maintained in working memory at a given time is notoriously small
(Petri et al., 2017; Feng et al., 2014; Oberauer & Kliegl, 2006). This means that seriality is also an important
aspect of how the PFC operates: top-down attention must be applied serially over the course of a planning
or reasoning process, and intermediate results must be integrated over time. However, the serial processing of
a few elements at a time can also be an advantage, as it enables arbitrary sequences of complex computational
processing at each of these steps to be combined to obtain more powerful and compositional computation.
This may be an important factor for supporting Turing-machine like universal computation (Graves et al.,
2014; Newell, 1990), and for generalizing outside of the training distribution (Bengio, 2017; 2019).

Learning: Dopamine and reinforcement Recent proposals from deep learning researchers have
encouraged neuroscientists to focus on the architectures, learning algorithms, and cost functions in the brain,
as opposed to the more traditional approach of characterizing the low-level biological mechanisms or tuning
properties of neurons or neuronal populations (Marblestone et al., 2016; Richards et al., 2019). This approach
has been emphasized in research in connectionism and parallel distributed processing for decades (Rumelhart
et al., 1986), but much remains unknown about the learning mechanisms and cost functions that might be
at work in biological neurons (Richards et al., 2019). Reinforcement learning is thought to be especially
important for learning in the PFC, which receives ample dopamine signals conveying reward prediction
errors (O’Reilly & Frank, 2006), and is heavily involved in decision-making and planning (Rushworth &
Behrens, 2008). A recent proposal shows that a number of empirical findings can be explained by a model
in which the PFC implements a meta-reinforcement learning system, trained by dopamine to instantiate
an RL procedure within the dynamics of its neural activity (Wang et al., 2018).

A PFC module for deep learning? Much remains unknown, but an overall picture of the PFC that has
emerged in cognitive and computational neuroscience is one where it selects, maintains, and manipulates
learned representations in other areas of the brain through a serial process of top-down attentional modulation
(Miller & Cohen, 2001; O’Reilly & Frank, 2006; Hazy et al., 2007). This serial processing may be tuned
through reinforcement or meta-reinforcement learning and dopamine signals to optimize performance on
tasks that require reasoning, rule-like representations, sequential and dynamic recombination of computations,
cognitive control, or temporally abstract planning. This kind of system may be critical to ensuring flexibility
in familiar environments and controlled decision-making in novel ones, and may allow for efficient planning
on multiple timescales.

Many of the current major challenges facing deep learning research involve tasks that require an extended
notion of generalization, not just to examples from the same distribution as the past observations, but also to
out-of-distribution inputs (Lake & Baroni, 2018; Bahdanau et al., 2019b; Bengio, 2019). The ability to handle
such non-stationarities would naturally evolve because learning agents (who change their policy and thus end
up visiting different states of the environment) naturally face them, and even more so in a social multi-agent
context where the environment itself changes. Some of the paradigmatic cases in which humans are able to do
this involve the application of known rules to novel elements (Lake et al., 2019a) — a cognitive function that
has been associated with the PFC (Miller & Cohen, 2001; Wallis et al., 2001). This systematicity is natural in
symbolic systems typical of classical approaches to AI, but these lack many of the powerful advantages brought
by deep learning (such as the ability to learn efficiently on a large scale, to handle uncertainty, to generalize
well across symbols through distributed representations, and to ground these symbols in a complex perceptual
reality). These symbolic systems utilize the notions of indirection or of variables — arrays of memory that can
be manipulated by computations that do not depend on the specific content stored there — ensuring the kind of
abstraction necessary for this kind of systematic generalization to emerge. An analogous independence may ex-
ist between the PFC and posterior sensory and association areas: the PFC may be able to select and manipulate
representational content in these areas according to learned rules that can be applied to many different elements
(Russin et al., 2019; Kriete et al., 2013). This may provide the kind of abstraction and compositionality
currently missing from standard architectures in deep learning (Bengio, 2017; Bengio et al., 2019).

5 CONCLUSION

We have argued that there is a striking correspondence between the tasks on which humans outperform
current AI systems and the executive functions associated with the PFC. We believe that a greater focus
on the principles and inductive biases at work in the PFC may inspire novel architectures that can accomplish
similar functions. Much remains to be learned in making these principles more concrete and in implementing
them in working systems, but we hope that we have taken a step in this direction and that this work will
facilitate greater synergy between neuroscience and AI in the future.
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