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ABSTRACT

Converging evidence suggests that human languages evolve to optimize complexity-
efficiency tradeoffs. We report here that, similarly, when deep networks are trained
to jointly solve a task while communicating through a discrete channel, the emer-
gent communication code naturally adapts to minimize its entropy, that is, the
mutual information between the communicating agents’ inputs and the messages
is minimized, within the range afforded by the need for successful communica-
tion. Further, the entropy minimization trend is amplified as we increase channel
discreteness, suggesting that the latter property might play an important role in
enforcing efficiency pressures on communication systems.

1 INTRODUCTION

Multiple studies indicate that efficiency pressures are at work in language and other biological
communication systems (Ferrer i Cancho et al., 2013; Gibson et al., 2019). One particular aspect
of communicative efficiency, that has been robustly observed across many semantic domains, is a
tendency to minimize lexicon entropy, to the extent allowed by the counteracting need for accuracy
(Zaslavsky et al., 2018; 2019). For example, while most languages distinguish grandmothers from
grandfathers, very few have separate words for mother- and father-side grandmothers, as the latter
distinction would make communication only slightly more accurate at the cost of an increase in
lexicon complexity (Kemp & Regier, 2012). We show here that the protocol evolved by deep neural
network agents that jointly solve a task by communicating through a discrete channel is subject to the
same complexity minimization pressure.

We establish our results in the context of signaling games (Lewis, 1969), as used in the recent deep
agent language emergence literature (Lazaridou et al., 2016; Havrylov & Titov, 2017; Li & Bowling,
2019). There are two neural network agents, Sender and Receiver, provided with individual inputs at
the beginning of each episode. Sender sends a message to Receiver, and Receiver has to perform an
action based on its own input and the received message. Importantly, there is no direct supervision on
the message protocol. We consider agents that are deterministic functions of their inputs (test-time).

As an example, consider a task of communicating a n-bit number, sampled uniformly at random
from 0...2n − 1. The full number is shown to Sender, and its k (0 ≤ k ≤ n) bits are also revealed to
Receiver. Receiver has to output the full number, based on the message from Sender and its own input.
Would the Sender transmit the entire number through its message? In this case, the protocol would be
“complex,” encoding n bits. Alternatively, Sender could only encode the bits that Receiver does not
know, and let Receiver fill in the rest by itself. This emergent protocol would be “simple,” encoding
less information about the number. We find experimentally that, once the agents are successfully
trained to jointly solve the task, the emergent protocol achieves the minimal entropy of the messages
or, equivalently in our setup, the mutual information between Sender’s input and messages. In other
words, the agents consistently approximate the simplest successful protocol (in the current example,
the one transmitting ≈ n− k bits).

We can connect the entropies of Sender and Receiver inputs is and ir, messages m, Receiver’s
output (the chosen action) o, and ground-truth outputs l by standard inequalities1 (Cover & Thomas,
2012). Denoting Sender’s computation as a function S : S(is) = m, and R as Receiver’s function
(R(m, ir) = o), we obtain:

H(is) ≥ H(S(is)) = H(m) ≥ H(m|ir) ≥ H(R(m, ir)|ir) = H(o|ir) ≈ H(l|ir), (1)

An extended version of this study can be found in (Kharitonov et al., 2019a).
1We also use the fact that for a discrete r.v. x and a (deterministic) function g it holds that H(x) ≥ H(g(x)).
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where the last relation stems from the fact that after a successful training o ≈ l. Our empirical
measurements indicate that the entropy of the messages m in the emergent protocol tends to approach
the lower bound: H(m)→ H(l|ir), even if the upper-boundH(is) is far. Moreover, we observe that
when the amount of information that Receiver needs is reduced, without changing other parameters,
the emergent protocol becomes simpler (lower entropy).

2 METHODOLOGY

To study the informational complexity of the emergent communication protocol as a function of
Receiver’s information need, we devise signalling games that allow us to easily control the amount of
information Receiver needs to perform its task. We can achieve this in two ways: either by controlling
the amount of side information Receiver has, or by changing the required complexity of Receiver’s
outputs. We study these two possibilities in two games: Guess Number and Image Classification.

In Guess Number, the agents are trained to recover a vector with uniform Bernoulli-distributed
components. In the second game, Image Classification, uses more naturalistic data, as the agents are
jointly trained to classify pairs of hand-written MNIST digits (LeCun et al., 1998b).

Guess Number We draw an 8-bit integer z, 0 ≤ z ≤ 255 uniformly at random. All bits are revealed
to Sender as a 8-dimensional binary vector is. The last k bits are revealed to Receiver (0 ≤ k ≤ 8)
as its input ir. Sender outputs a single-symbol message m to Receiver. In turn, Receiver outputs a
vector o that recovers all the bits of z and should be equal to is.

Image Classification The agents are jointly trained to classify 28x56 images of two MNIST digits,
stacked side-by-side (more details in Supplementary). Unlike Guess Number, Receiver has no side
input. Instead, we control the informational complexity of Receiver’s task by controlling the size of
its output space, i.e., the number of labels we assign to the images. To do so, we group all two-digit
sequences 00..99 into Nl ∈ {2, 4, 10, 20, 25, 50, 100} equally-sized classes.

We report hyperparameter grids and architecutres of the agents in Supplementary. In the following
experiments, we fix vocabulary to 1024 symbols (we observed the reported effect in experiments with
other vocabulary sizes, multi-symbol messages, and larger architectures, which we omit due to space
constraints). When training with REINFORCE (see below), we use the 0/1 loss. Otherwise, we use
binary cross-entropy (Guess Number) and negative log-likelihood (Image Classification).

Training with discrete channel Training to communicate with discrete messages is non-trivial,
as we cannot back-propagate through the messages. To highlight the generality of the observed
effect, we use two approaches, most popular in the language emergence work: Gumbel-Softmax
relaxation (Maddison et al., 2016; Jang et al., 2016) and REINFORCE (Williams, 1992). We also
explore the Stochastic Computation Graph (SCG) optimization approach (Schulman et al., 2015),
where Receiver is trained via conventional backpropagation and Sender is trained with REINFORCE.
We plug the obtained gradient estimates into the Adam optimizer (Kingma & Ba, 2014). Due
to space constraints, for further details on these methods we refer to a description of the EGG
framework (Kharitonov et al., 2019b) which we used to implement the experiments.

Entropy regularization When training with REINFORCE and SCG, we use a standard trick to aid
exploration by adding an entropy regularization term which explicitly maximizes Sender’s output
entropy (Williams & Peng, 1991). The trade-off between the communication loss and the entropy
regularization is controlled by a coefficient λs. Clearly, this regularization is at odds with the
entropy minimization effect we observe. In our experiments, we found that high values of λs prevent
communication success; on the other hand, small non-zero λs is crucial for successful training. In
Section 3 we investigate the effect of λs on entropy minimization.

Gumbel-Softmax temperature Another important hyperparameter is the Gumbel-Softmax relax-
ation temperature, τ . As τ tends to 0, the samples from the Gumbel-Softmax disrtibution get closer
to one-hot samples; as τ → +∞, the samples become uniform in their components. During training,
we use these relaxed samples as messages from Sender, making the entire setup differentiable.

Experimental protocol In Guess Number, we use all 256 possible inputs for training, early stop-
ping and analysis. In Image Classification, we train on random image pairs from the MNIST training
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Figure 1: Entropy of the messages m. Top: Guess Number. Bottom: Image Classification. Shaded
regions mark standard error of the mean.

data, and use image pairs from the MNIST held-out set for validation. We select the runs that achieved
high performance (training accuracy above 0.99 for Guess Number and validation accuracy above
0.98 for Image Classification), thus studying agent behavior provided they succeeded at the game.

At test time, we select the Sender’s message symbol greedily, hence the messages are discrete and
Sender represents a (deterministic) function S of its input is, m = S(i). Calculating the entropy
H(m) of the distribution of discrete messages m is straightforward. In Guess Number, we enumerate
all 256 possible values of z as inputs, save the messages from Sender and calculate entropy H(m).
For Image Classification, we sample image pairs from the MNIST hold-out set.

The upper bound on H(m) is as follow: Hmax = 8 bits (bounded by H(is)) in Guess Number, and
Hmax = 10 bits (bounded by vocabulary size) in Image Classification. Its lower bound is equal to
Hmin = H(l|ir) = 8− k bits for Guess number. In Image Classification, communication can only
succeed if H(m) is not less than log2Nl, where Nl is the number of equally-sized classes.

3 EXPERIMENTS

Guess Number In Figures 1a-1c, the horizontal axes span the number of bits of z that Receiver lacks,
8−k. The vertical axis reports the information content of the protocol, measured by messages entropy
H(m). Each integer on the horizontal axis corresponds to a game configuration, and for each such
configuration we aggregate multiple (successful) runs with different hyperparameters and random
seeds. Hmin indicates the minimal amount of bits Sender has to send in a particular configuration for
the task to be solvable. The upper bound (not shown) is Hmax = 8 bits.

Consider first the configurations where Receiver’s input is insufficient to answer correctly (at least
one binary digit hidden, k ≤ 7). From Figures 1a-1c, we observe that the transmitted information is
strictly monotonically increasing with the number of binary digits hidden from Receiver. Thus, even
if Sender sees the very same input in all configurations, a more nuanced protocol is only developed
when it is necessary. Moreover, the entropy H(m) stays close to the lower bound. This entropy
minimization property holds for all the considered training approaches across all configurations.

Consider next the configuration where Receiver is getting the whole integer z as its input (k = 8, the
leftmost configuration in Figure 1, corresponding to 0 on x axis). One would expect that the protocol
would approach zero entropy in this case (as no information needs to be transmitted). However, the
measurements indicate the opposite. It turns out that this information is entirely ignored by Receiver.
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To demonstrate this, we shuffled the messages from Sender in the batch, destroying any information
about the inputs they might carry. The overall performance was not affected by this manipulation,
confirming the hypothesis that Receiver ignores messages. We conclude that in this case there is no
apparent entropy minimization pressure on Sender simply because there is no communication.

We further consider the effect of various hyperparameters. In Figure 1a, we split the results obtained
with Gumbel-Softmax by relaxation temperature. As discussed in Section 2, lower temperatures
more closely approximate discrete communication, hence providing a convenient control of the level
of discreteness imposed during training (recall that at test time we select the symbol greedily). The
figure shows that lower temperatures consistently lead to lower H(m) values. This implies that, as
we increase the “level of discreteness” at training, we get stronger entropy minimization pressures.

In Figures 1b & 1c, we report H(m) when training with Stochastic Graph Optimization and RE-
INFORCE across degrees of entropy regularization. We report curves corresponding to λs values
which converged in more than three configurations. With REINFORCE, we see a weak tendency for
a higher λs to trigger higher entropy in the protocol (only violated at λs = 0.5). However, message
entropy stays generally close to the lower bound even in presence of strong exploration, which favors
higher entropy in Sender’s output distribution.

Image Classification As the models are more complex, we only had consistent success when training
with Gumbel-Softmax. In Figure 1d we report all successful runs, aggregated by temperature. The
information encoded by the protocol grows as Receiver’s output requires more information. However,
in all configurations, the transmitted information stays well below the 10-bit upper bound and tends to
be close to Hmin. A natural interpretation is that Sender prefers to take charge of image classification
and directly pass information about the output label, rather than sending along a presumably more
information-heavy description of the input. Again, we see that lower temperatures consistently lead
to stronger entropy minimization pressures.

Summarizing, when communicating through a discrete channel, there is consistent pressure for the
emergent protocol to encode as little information as necessary. This holds across games, training
methods and hyperparameters. When training with Gumbel-Softmax, temperature controls the
strength of this pressure, confirming the relation between entropy minimization and discreteness.

4 DISCUSSION

Entropy minimization is pervasive in human language, where it constitutes a specific facet of the more
general pressure towards communication efficiency. We found that the same property consistently
characterizes the protocol emerging in simulations where two neural networks learn to solve a task
jointly through a discrete communication code.

In a comparative perspective, our results suggest that entropy minimization is a general property of
discrete communication systems, independent of specific biological constraints humans are subject
to. In particular, our analysis tentatively establishes a link between this property and the inherent
difficulty of encoding information in discrete form.

Our results also have implications for the efforts to evolve agents interacting with each other and
with humans through a discrete channel. Due to the entropy minimization, we should not expect the
agents to develop a richer protocol than the simplest one that will ensure accurate communication.
For example, Bouchacourt & Baroni (2018) found that agents trained to discriminate pairs of natural
images depicting instances of about 500 high-level categories, developed a lexicon that does not
denote such categories, but low-level properties of the image themselves. This makes sense from an
entropy-minimization perspective, as talking about the 500 high-level categories demands log2 500
bits of information, whereas many low-level strategies (e.g., discriminating average pixel intensity
in the images) will only require transmitting a few bits. To have agents developing rich linguistic
protocols, we must face them with varied challenges that truly demand them.

In the future, we would like to study more continuous domains, such as color maps, where perfect
accuracy is not easily attainable, nor desirable. Will the networks find an accuracy/complexity
trade-off similar to those attested in human languages?
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A AGENT ARCHITECTURE DETAILS

Guess Number Sender has a linear layer that maps the input vector is to a hidden representation
of size 10, followed by a leaky ReLU activation. Next is a linear layer followed by a softmax over
the vocabulary. Receiver linearly maps both its input ir and the message to 10-dimensional vectors,
concatenates them, applies a fully connected layer with output size 20, followed by a leaky ReLU.
Finally, another linear layer and a sigmoid nonlinearity are applied. When training with REINFORCE
and the Stochastic Computation graph approach (see Section 2), we increase the hidden layer sizes
threefold, as this leads to more robust convergence.

Image Classification In Sender, input images are embedded with a LeNet-1 instance (LeCun et al.,
1990) into 400-dimensional vectors. These embedded vectors are passed to a fully connected layer,
followed by a softmax selecting a vocabulary symbol. Receiver embeds the received messages into
400-dimensional vectors, passed to a fully connected layer with a softmax activation returning the
class probabilities.

B TWO-DIGIT MNIST DATASET

As discussed in Section 2, to ensure high output informational complexity in the Image Classification
task, we use a two-digit variant of the MNIST dataset (LeCun et al., 1998a). We construct it as
follows. When iterating over the original MNIST dataset, we take a batch b and (a) select the first
|b|/2 and last |b|/2 images, refer to them as b1 and b2, respectively; (b) create a new batch where the
ith image from b1 is placed to the left of the ith image from b2 and then vice versa. As a result, we
obtain a new stream of images, where each MNIST digit is seen twice, on the left and on the right
side. Note that not all possible pairwise combinations of the original images are generated (there
are 600002 of those in the training set alone) and the exact combinations change across epochs. As
labels, we use the depicted two-digit number modulo Nl, where Nl is the required number of classes.
All pixels are scaled into [0, 1]. We use the same process to generate training and test sets, based on
the training and test images of the original MNIST dataset, respectively.

C HYPERPARAMETERS

In our experiments, we used the following hyperparameter grids.

Guess Number (Gumbel-Softmax) Vocab. size: [256, 1024, 4096]; temperature, τ : [0.5, 0.75, 1.0,
1.25, 1.5]; learning rate: [0.001, 0.0001]; max. number of epochs: 250; random seeds: [0, 1, 2, 3];
batch size: 8; early stopping thr.: 0.99; bits shown to Receiver: [0, 1, 2, 3, 4, 5, 6, 7, 8].

Guess Number (REINFORCE) Vocab. size: [256, 1024, 4096]; Sender entropy regularization coef.,
λs: [0.01, 0.05, 0.025, 0.1, 0.5, 1.0]; Receiver entropy regularization coef., λr: [0.01, 0.1, 0.5, 1.0];
learning rate: [0.0001, 0.001, 0.01]; max. number of epochs: 1000; random seeds: [0, 1, 2, 3]; batch
size: 2048; early stopping thr.: 0.99; bits shown to Receiver: [0, 1, 2, 3, 4, 5, 6, 7, 8].

Guess Number (Stochastic Computation Graph approach): Vocab. size: [256, 1024, 4096];
Sender entropy regularization coef., λs: [0.01, 0.025, 0.05, 0.075, 0.1, 0.25]; learning rate: [0.0001,
0.001]; max. number of epochs: 1000; random seeds: [0, 1, 2, 3]; batch size: 2048; early stopping
thr.: 0.99; bits shown to Receiver: [0, 1, 2, 3, 4, 5, 6, 7, 8].

Image Classification experiments Vocab. size: [512, 1024, 2048]; temperature, τ : [0.5, 0.75, 1.0,
1.5, 2.0]; learning rate: [0.01, 0.001, 0.0001], max. number of epochs: 100; random seeds: [0, 1, 2];
batch size: 32; early stopping thr.: 0.98; number of classes: [2, 4, 10, 20, 25, 50, 100].
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D EVOLUTION OF MESSAGE ENTROPY DURING TRAINING

In this Section, we aim to gain additional insight into development of the communication protocol
by measuring its entropy during training. We concentrate on Guess Number and use the same
experimental runs summarized in Figure 1 of the main text.

For each game configuration (that is, number of bits hidden from Receiver), we randomly select one
successful run and plot the evolution of Sender message entropy and accuracy over training epochs.2
We also plot entropy and accuracy curves for a randomly selected failed run, to verify to what extent
entropy development depends on task success.

We report results for runs where training was performed with Gumbel-Softmax relaxation and with
the Stochastic Graph Computation approach in Figures 2 and 3, respectively. The reported entropy
and accuracy values are calculated in evaluation mode, where Sender’s output is selected greedily,
without sampling. A higher entropy of such deterministic Sender indicates that the latter can encode
more information about inputs in its messages.

From these results, we firstly observe that the initial entropy of Sender’s messages (before training)
can be both higher than required for communication success (Figures 2a and 3a) and lower (the rest).
When it starts higher than needed, it generally falls closer to the minimum level required for the
solution. When the initial value is low, it increases during training. The failed runs can have message
entropy above (Figures 2a, 2b & 3a) and below (e.g. Figures 2c, 2d & 3d) successful runs, suggesting
that there is no systematic relation between degree of entropy and task success.

The fact that the entropy can be reduced with no decrease in accuracy or even with accuracy growth
(e.g. Figure 2a, red line, epochs 5..30) indicates that the tendency to discover new messages (increasing
entropy) is counter-balanced by the complexity of mutual coordination with Receiver when entropy
is larger. In our interpretation, it is this interplay that serves as a source of the natural bottleneck.

Finally, while in some runs the entropy is effectively increased w.r.t. its initialization level, the
resulting protocol’s entropy is at, or slightly above the lower bound of what the task allows. In this
sense, we argue that the reported effect can be correctly denoted as a “minimization” result.

2We exclude the configuration in which Receiver sees the entire input, as it is a degenerate case of non-
communication, as discussed in Section 4 of the main text.
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(d) Binary digits hidden: 8

Figure 2: Evolution of H(m) over training epochs. Gumbel Softmax-based optimization, Guess
Number. For each game configuration, specified by the number of bits Receiver lacks, we sample
one successful (black line) and one failed (red line) training trajectory. The blue line marks Hmin,
minimal entropy for a successful solution.
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Figure 3: Evolution of H(m) over training epochs. Stochastic Computation Graph-based optimiza-
tion, Guess Number. For each game configuration, specified by the number of bits Receiver lacks, we
sample one successful (black line) and one failed (red line) training trajectory. The blue line marks
Hmin, minimal entropy for a successful solution.
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